	
	
	Bioinformatics Integration Support Contract (BISC), Phase II
Standard Operating Procedure (Sop) for hla quality control (qc) pipeline
[image: image6.jpg]
Version 1.3
Period Of Performance: September 30, 2004—September 29, 2010
Developed Under Contract Number: HHSN266200400076C

ADB Contract Number: N01-AI-40076
Delivered: January 16, 2009
Project Sponsor:
National Institutes of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)

Division of Allergy, Immunology, and Transplantation (DAIT)
Prepared by:

[image: image1.jpg]Federal Enterprise Solutions

Health Solutions

2101 Gaither Rd, Suite 600

Rockville, Maryland 20850

(301) 527-6600

Fax: (301) 527-6401

jeff.wiser@ngc.com

Contents

11.0
Introduction

32.0
Allele Name Syntax for Allele Validation

32.1
Non-Terminal Tokens

42.2
Terminal Tokens

42.3
Terminal Tokens

43.0
Validating Allele Names for Allele Validation

53.1
NMDP Code Transformation

53.2
G-Code Lookup

53.3
Special Names Replacement

53.4
Allele Name Lookup

63.5
Examples of hla_cell

74.0
Allele Cell Ambiguity Resolution

145.0
Validation Pipeline Configuration

196.0
Pipeline Execution Process

197.0
Pipeline Output

207.1
Example Output for validateAlleleName.pl

287.2
Example Output for disambiguateAlleleNames.pl

Appendixes
33APPENDIX A
Installing Pypop

33A.1
System Requirements

33A.2
Installation Process

34A.3
Software Version

34APPENDIX B
HLA File Content Formats

35B.1
HLA Typing Result Template Content Format

35B.2
Pypop Tool Input File Content Format

35B.3
HLA Raw Miscellaneous Input File Content Form

36APPENDIX C
Validation Pipeline Error Messages

37C.1
Allele Validator Errors

38C.2
Tools Errors

38C.3
HLA File Errors

39C.4
Pypop Errors

39C.5
Allele Disambiguator Errors

39C.6
Allele Errors

40C.7
Pre-Process Errors

40C.8
HLA File Converter Errors

41C.9
Lookup Table Manager Errors

41APPENDIX D
Four Digit Ambiguity Resolution

SOP for HLA Quality Control Pipeline Version History
	Version
	Date
	Description

	1.0
	06/09/08
	Allele Validation Specification

	1.1
	06/13/08
	Inclusion of review comments from Steve Mack, update of Installation instructions, and reword of section 4

	1.2
	06/26/08
	· Updated Section 4 with complete decision tree processing for ambiguity resolution
· Added disambiguatedType property that controls the type of ambiguity resolution
· Added 4-digit ambiguity resolution alternative in Appendix D

	1.3
	01/16/09
	Corrected property name spelling disambiguatedType is disambiguatorType

1.0 Introduction

This document specifies the SOP for the HLA quality control pipeline. Currently, the pipeline includes the following steps: file pre-processing, allele cell validation, allele cell ambiguity resolution, and pypop tool execution. This pipeline operates on HLA Typing Result files, pypop input files, and HLA Raw files. These files can be provided in tab-separated (.txt or .csv suffix) or in Excel spreadsheet (.xls suffix) formats. File pre-processing currently converts all file formats to a standard HLA Typing Result file format for processing in the pipeline.

Sections2 & 3 specifies the first step in the pipeline, allele validation, and includes: allele cell syntax checking and allele cell validation process. Furthermore, this step will replace certain types of names with the corresponding group code (g-code). The names are specified in Section 3.

Section 4 specifies the second step in the pipeline, allele cell ambiguity resolution. The ambiguity resolution step currently implements processing as specified in the paper, “Common and Well-Documented Alleles”, Human Immunology 68, 392–417 (2007) and uses data specified in the paper and the Anthony Nolan ambiguous typing data accessed at the web-site:

http://www.ebi.ac.uk/imgt/hla/ambig.html
Sections 5, & 6 specify how to configuration the validation pipeline, how to run the pipeline, and how to interpret the output, respectively.

The following Figure 1, “HLA QC Pipeline Architecture”, provides a graphic of the pipeline, while Figure 2, “HLA QC Pipeline MHC Database”, illustrates the type of look data used in the validation and ambiguity resolution process.

Figure 1, HLA QC Pipeline Architecture

[image: image2]
Figure 2, HLA QC Pipeline MHC Database

[image: image3]
2.0 Allele Name Syntax for Allele Validation
The syntax of an HLA allele cell is defined by the modified Backus-Naur form (BNF) notation presenting the allele cell syntax in Subsections 2.1 Non-Terminal Tokens, and 2.2 Terminal Tokens below. Subsection 2.3 specifies the token syntax validation process. Error messages for this process are specified in Appendix C.1 “Allele Validator Errors” and Appendix C.6 “Allele Errors”.
2.1 Non-Terminal Tokens
The non-terminal tokens are specified in Table 1, “Non-Terminal HLA Cell Tokens”. In the specification below for <allele_names>, white space (spaces) can occur around any of the components. This white space is ignored in processing.

Table 1, Non-Terminal HLA Cell Tokens
	Token
	Specification
	Notes

	<hla_cell>
	<missing_allele>
| <allele_names>
| <nmdp_alleles>
| <gcode_alleles>

| <serological_alleles>
	

	<allele_names>
	 (<an_full_name> | <an_full_digit_name>)
 (<allele_separator> <an_full_digit_name>)* -- BR1
| (<an_full_name> | <an_full_digit_name>)
 (<allele_separator> <an_final_name>)*
 -- BR2
| <an_odd_digit_name> (<allele_separator>
 (<an_odd_digit_name> | <an_full_digit_name>))*
 -- BR3
| <an_odd_digit_name> (<allele_separator> <an_final_name>)* -- BR4
	

	<nmdp_alleles>
	<hla_loci>*<digit><digit><nmdp_code> -- BR5
	

	<gcode_alleles>
	<an_full_name><gcode_suffix> -- BR6
	The gcodes have an <an_full_name> without the <name_suffix>

	<serological_alleles>
	(<hla_loci>*)? <digit><digit>XX -- BR7
	This is a special NMDP format for serological alleles

	<an_full_name>
	<hla_loci>*<an_full_digit_name>
	

	<an_full_digit_name>
	<digit><digit> <an_final_name>? <name_suffix>?
	

	<an_odd_digit_name>
	 <digit> <an_final_name>? <name_suffix>?
	The digit zero ('0') is assumed as the initial digit in the case of a one or three digits, otherwise it is assumed to be specified ‘as-is’

	<an_final_name>
	<digit><digit> (<digit><digit> (<digit><digit>)?)?
<name_suffix>?
	

2.2 Terminal Tokens

The terminal tokens define the base content of the allele cell as defined in Table 2, “Terminal HLA Cell Tokens”. In the specification below, alphabetic characters are shown as upper-case, but all searches are performed in a case-sensitive manner. Also, for <missing_allele> terminal token white space (spaces) is ignored in processing.

Table 2, Terminal HLA Cell Tokens

	Token
	Specification
	Notes

	<separator>
	':' | '/' | ',' | ' '
	For a given cell, only one separator can be used in that cell

	<digit>
	'0' | '1' | '2' | '3' | '4' | '5' | '6'
| '7' | '8' | '9'
	

	<gcode_suffix>
	'g'
	Standard g-code specifier suffix

	<hla_loci>
	'HLA-A' | 'A' | 'HLA-B' | 'B'
| 'Cw' | ...
	Standard Anthony Nolan HLA locus names

	<missing_allele>
	· HLA Typing Result: ''
| '-' | '"-"' | 'XXXX'
· Pypop input file: '****'
	

	<name_suffix>
	'C' |'N' | 'L' | 'S' | 'A' | 'Q'
	Standard Anthony Nolan HLA allele nomenclature suffix

	<nmdp_code>
	'AB' | 'AC' | ...
	Standard NMDP code names; these codes differ from <name_suffix> values so are distinguishable

2.3 Terminal Tokens

Syntactic validation consists of determination that there is a valid hla_cell token for a cell using Table 1 and 2 above. This validation does not determine whether or not the alleles represented by the hla_cell are valid Anthony Nolan allele names (See Section 3). If the syntax validation fails error, messages are generated and no further processing of the cell is performed. Also, during syntactic validation processing, certain data transformations occur that are documented in for the tool, validateAlleleNames.pl, in Table 8 “validateHLa.pl Incremental Steps”
3.0 Validating Allele Names for Allele Validation
Once an allele <hla_cell> has been syntactically validated, then the set of Anthony Nolan allele names represented by this cell is determined. Any errors are reported (See Appendix C.1 “Allele Validator Errors” and Appendix C.6 “Allele Errors”). For <nmdp_alleles> and <gcode_alleles> alleles, this will require a lookup, and, in the case of nmdp_alleles, a transformation into the set of alleles represented. For a cell composed of <an_odd_digit_name>, a two step process if followed: a zero digit (‘0’) is prefixed to the digits and the allele is checked against the current alleles, and failing that the allele is checked in the Anthony Nolan changed names list. The process of acquiring the external data for validation and loading into the immport database is specified in the SOP, “Standard Operating Procedure for Loading HLA Data and Features”.
3.1 NMDP Code Transformation

The NMDP codes are translated using the lookup table provided at the NMDP web-site

http://bioinformatics.nmdp.org/HLA/allele_code_lists.html.
The process to translate a code depends on whether the value of the code is a set of 2-digit or 4-digit values.

For example, if the NMDP code is B*58VE, the lookup for ‘VE’ will return the value ‘01/11’. The alleles for the code will be B*5801 and B*5811.

Another example is B*15BKVK. The lookup for the code, ‘BKVK’, returns the value ‘1501/1501N/9502/9504’. The alleles for this code are B*1501, B*1501N, B*9502, and B*9504.

If the NMDP code is not known, then an error is reported and the cell is not processed further. Otherwise if the NMDP code is defined and consistent for the locus, then it is replaced in the validated file by its set of alleles.
3.2 G-Code Lookup

The determination of alleles for a g-code is a grouping code determined by a lookup table derived from the paper “Common and Well-Documented HLA Alleles”, Human Immunology 68, 392-417 (2007). For example, if the g-code A*020101g is provided, then the alleles A*0201, A*02010101, A*0209, A*0243N, A*0266, A*0275, A*0283N, and A*0289 are returned. If the g-code is not known, then an error is reported and the cell is not processed further. The gcode is left ‘as-is’ in the validated file.
3.3 Special Names Replacement

Special names fall into two categories:

· ‘Suggested Name’ as defined in the paper “Common and Well-Documented HLA Alleles”, Human Immunology 68, 392-417 (2007)

· ‘Code in Table’ as defined in the Anthony Nolan ambiguous typing data

In the first case, the ‘Suggest Name’ is replaced by its corresponding g-code as defined in Section 3.2, and in the second case the ‘Code in Table’ is replaced by the list of alleles defined in the Anthony Nolan ambiguous typing data. This ambiguity typing data is available from the ANT web-site for the current version of the HLA allele data:

http://www.ebi.ac.uk/imgt/hla/ambig.html
3.4 Allele Name Lookup

Once the allele names are successfully determined, then they are then checked to see that they exist in the current release of the Anthony Nolan HLA dataset. There are several cases specified in priority checking order in Table 3, “Allele Name Validation Cases” below. Only the first case will represent a clean match. The other cases will require further processing. For the cases in the table, a ‘prefix string match’ of an allele name to a current allele (one in the current Anthony Nolan release) is defined to be a perfect match of the allele name to the prefix of a current allele. The prefix string consists of the digits of the allele name we attempting to match to current alleles, and can contain two (2) or more digits. The changed allele name and deleted allele name lists specified in the table below for a given Anthony Nolan release are acquired from the Anthony Nolan web site:

ftp.ebi.ac.uk/pub/databases/imgt/mhc/hla
Table 3, Allele Name Validation Cases
	Case
	Description

	exact match
	The allele name represents exactly one current allele either as an exact string match or prefix string match.

	multiple matches
	More than one current allele is matched by a prefix string match. This is not an error, but will be reported for further processing.

	delete match
	No current allele is matched either exactly or by prefix string match, but the allele name matches exactly one of currently deleted alleles. If the deleted allele references a replacement allele, then this is not an error, but it will be reported along with the replacement name for further processing. If the deleted allele does not reference a replacement allele, then an error is generated.

	change match
	No current allele is matched exactly or by prefix string match, but the allele name matches exactly one of the changed names. This occurs for the <an_odd_names> when the number of digits is either five (5) or seven (7). This is not an error, but it will be reported along with the replacement name for further processing

	missing match
	None of the above categories apply. An error is generated.

3.5 Examples of hla_cell

This section assumes that these cells occur for the HLA-A locus. The BR-rules are defined in Table 1, “Non-Terminal HLA Cell Tokens, and are illustrated in Table 4, “Valid hla_cells”. Also, Table 5, “Validated, and Disambiguated HLA-A Alleles”, found in Section 5 illustrates validate and invalid cell data.

Table 4, Valid hla_cells

	Business Rule
	hla_cell
	Alleles Represented

	BR1
	A*0110
	A*0110

	BR1
	0110
	A*0110

	BR1
	0110/0106
	A*0110 and A*0106

	BR1
	A*0110/0106
	A*0110 and A*0106

	BR2
	A*2312/14/15
	A*2312, A*2314, and A*2315

	BR3
	110
	A*0110

	BR3
	110/106
	A*0110 and A*0106

	BR4
	110/06
	A*0110 and A*0106

	BR5
	A*02AMJM
	A*0201, A*0209, A*0243N, and A*0266

	BR6
	A*010101g
	A*01010101 and A*0104N

	BR7
	A*01XX
	All A* alleles with serological category ‘01’

4.0 Allele Cell Ambiguity Resolution

This section specifies the current ambiguity resolution processing. The ambiguity resolution process assumes that the input file has been validated (Sections 2 & 3). At this point, each allele cell is composed of a single allele name, g-code, serological code, or a collection of allele names.

An allele is common and well-documented (CWD), if its name is a common and well-documented allele as defined in the paper, “Common and Well-Documented HLA Alleles”, Human Immunology 68, 392-417 (2007). Also, a four (4) digit allele is common and well-documented if its four digits appear as the first four digits of one of the CWD allele names as defined in the paper. A rare allele is an allele that is not a CWD as defined above. Furthermore, an allele is a member of a gcode if it is defined as such in the above paper. A gcode group is a mechanism to group alleles that are the same at the peptide level for exons 2 & 3 for Class I loci or exon 2 for Class II loci. Also, a four (4) digit allele is a member of a gcode if it appears as the first four digits of an allele that is defined to reside in the gcode as defined in the paper.
In the ambiguity resolution process, cells containing only rare allele(s) will be left ‘as-is’. That is, all the alleles are reduced to their four (4) digit equivalents and written out to the ambiguity resolution file. Also, a note will be generated to the logging file if there is more than one rare allele indicating a cell contains only rare alleles. The log file does not register a note if the cell consists of a single rare allele.
The following decision process is default process for ambiguity resolution using the names as presented in the input file. A four digit version of ambiguity resolution is specified in Appendix D, “Four Digit Ambiguity Resolution”. The type of ambiguity resolution is specified by the property disambiguatorType (see Table 12 “Validation Properties”).
The following conditions are assumed.

1. The data in the input file has been validated using the current IMGT allele dataset.
2. Consider only non-trivial cells from the file for each locus. A cell is non-trivial if it contains at least one name.
3. The alleles for the given cell (and locus) are presented as the names list, (N1, N2, N3, ...), derived directly from the file.
4. If the length of the names is equal to one (1), then the name N1 can be an allele name, a gcode, or serological value (2-digit code). Otherwise, for names of length greater than one, the list will consist of only allele names.
For each name Ni in the names, the following set of attributes as defined in the Table 5, “Attributes Defined for Each Name Ni”, below are computed for it.

Table 5, Attributes Defined for Each Name Ni
	Attribute
	Definition
	Comments

	Ni.type
	Type of the name: allele, gcode, or sero
	· gcode is a name gcode group name (one ending in 'g')

· sero is a serological (2-digit) code
· allele is neither of the above

	Ni.dallele
	· If type is gcode, then the full name without the locus name but including the ‘g’ suffix,
· If type is sero, then the 2-digit abbreviation

· If type is allele, the 4-digits (peptide) abbreviation
	

	Ni.fallele
	Name without the locus name, but including the (optional) suffix from the input file
	Suffixes like the gcode suffix ‘g’, or allele suffixes ‘N’, ‘L’, etc.

	Ni.cwd
	· If type is allele, a Boolean indicating whether allele is a CWD allele (TRUE) or not (FALSE)

· If type is gcode or sero, the value is FALSE.
	The CWD designation for an allele is determined as follows:
· If the name Ni is only 4-digits without a suffix, then the CWD designation is determined Ni.dallele (same as Ni in this case)
· If the name has more than 4-digits and/or a suffix, then the CWD designation is determined using Ni.fallele.

	Ni.gcode
	· If type is allele, the gcode group name without locus name into which the allele name is grouped (see comments for details); if there is no group code, then the attribute is empty.
· If type is gcode, then the attribute has the value Ni.fallele.
	· For type allele and the name Ni is only 4-digits without suffix, the gcode is determined using only 4-digit lookup.
· For type allele and the name has more than 4-digits and/or a suffix, then the gcode is determined using a full allele name lookup using Ni.

The following processing cases are considered as defined in the following Table 6, “Processing Cases”.

Table 6, Processing Cases
	Processing Case
	Definition

	(==1)
	Length of names list equal 1

	(>1)
	Length of names list is greater than 1

(==1) Processing Case:
The decision tree is defined in the Table 7, “(==1) Decision Tree”, below. The Condition and Sub-Condition are considered in priority order. That is only one condition and optionally one subsequent Sub-Condition is executed for each N1
Table 7, (==1) Decision Tree
	Condition
	Sub-Condition
	Result

	N1.type in {'sero', 'gcode'}
	
	return N1.dallele

	N1.type == 'allele'
	N1.gcode defined
	return N1.gcode

	
	N1.cwd is FALSE
	return N1.dallele

	
	N1.cwd is TRUE
and
N1.fallele is a null allele (N-suffix)
	return N1.fallele

	
	N1.cwd is TRUE
and
N1.fallele has more than 4-digits
	Determine gcode using N1.dallele; if gcode exists return it, otherwise return N1.dallele

(>1) Processing Case:
This processing case is defined by two steps, the binning process, and result determination process. Recall that in this case all names Ni is type allele.

1. Binning Process

In this step, the names Ni are binned into the following lists defined in the Table 8, “Binning Lists”, below:

Table 8, Binning Lists
	List Name
	Definition

	cwds
	List of unique names for which Ni.cwd is TRUE, but no gcode can be determined for it (see the decision table below)

	rares
	List of unique names for which Ni.cwd is FALSE

	gcodes
	list of unique gcodes determined for names for which Ni.cwd is TRUE (see decision table below)

For each name Ni in the names list, the decision tree specified in the following Table 9, “(>1) Decision Tree”, defines how Ni is binned. The Condition and Sub-Condition are considered in priority order.
Table 9, (>1) Decision Tree
	Condition
	Sub-Condition
	Result

	Ni.cwd is FALSE
	
	bin Ni.dallele into rares

	Ni cwd is TRUE
	Ni.gcode defined
	bin Ni.gcode into gcodes

	
	Ni.cwd is TRUE
and
Ni.fallele is a null allele (N-suffix)
	bin Ni.fallele into cwds

	
	Ni.cwd is TRUE
and
Ni.fallele has more than 4-digits
	Determine gcode using Ni.dallele; if gcode exists return it, otherwise return Ni.dallele

2. Result Determination Process

The decision tree for determining the resulting cell is defined in the following Table 10, “Cell Results”.
Table 10, Cell Results
	Condition
	Cell Result

	rares > 0
and
cwds == 0
and
gcodes == 0
	return rares

	cwds > 0
and
gcodes == 0
	return cwds

	cwds == 0
and
gcodes > 0
	return gcodes

	cwds > 0
and
gcodes > 0
	return gcodes union cwds

Table 11, “Validated and Ambiguity Resolution for HLA-A Alleles”, illustrates the validation and the ambiguity resolution processing results for locus HLA-A.

Table 11, Validated, and Ambiguity Resolution for HLA-A Alleles

	Original Cell
	Validated Cell
	Ambiguity Resolved Cell

	010101g/A*0101
	
	

	0110
	0110
	0110

	0110/0106
	0110/0106
	0106/0110

	0110/106
	
	

	02
	02
	02

	0209/43N
	0209/0243N
	020101g

	0294N
	0294N
	0294

	02AMJM/A*0101
	
	

	03
	03
	03

	03/02
	
	

	0300
	03
	03

	0300/02
	
	

	1010.0
	
	

	1010102N
	01010102N
	010101g

	110
	0110
	0110

	110/0106
	0110/0106
	0106/0110

	110/06
	0110/0106
	0106/0110

	110/106
	
	

	2
	02
	02

	2202
	
	

	2402101
	24020101
	240201g

	294N
	0294N
	0294

	3
	03
	03

	3/02
	
	

	300
	03
	03

	300/02
	
	

	3013
	3013
	3013

	5101/17/21
	
	

	68011/0101
	680101/0101
	010101g/680101g

	68011/2402101
	680101/24020101
	240201g/680101g

	A*0101.1
	0101
	010101g

	A*0101.1N
	
	

	A*0101/0200
	
	

	A*0101/02AMJM
	
	

	A*0101/A*0101011g
	
	

	A*0101/A*010101g
	
	

	A*0101/A*02
	
	

	A*0101/A*0200
	
	

	A*0101/A*0212AMJM
	
	

	A*0101/A*102
	
	

	A*0101/A*3
	
	

	A*0101/A*B03
	
	

	A*0101011g
	
	

	A*0101011g/A*0101
	
	

	A*010101g
	010101g
	010101g

	A*010101g/A*0101
	
	

	A*010102g
	
	

	A*0110
	0110
	0110

	A*0110/0106
	0110/0106
	0106/0110

	A*02
	02
	02

	A*0200N
	
	

	A*020101g
	020101g
	020101g

	A*02011
	020101
	020101g

	A*020120
	020118
	020101g

	A*0212AMJM
	
	

	A*0212AMJM/A*0101
	
	

	A*021AMJM
	
	

	A*02202
	022002
	0220

	A*0294N
	0294N
	0294

	A*02AMJM
	0201/0209/0243N/0266
	020101g

	A*02AMJM/A*0101
	
	

	A*02BRHJ
	0201/0209/0243N/0266/0275/0283N/0289
	020101g

	A*02N
	
	

	A*03
	03
	03

	A*03/02
	
	

	A*0300
	03
	03

	A*0300/02
	
	

	A*03013
	030103
	030101g

	A*0312345678
	
	

	A*03BRHJ
	
	

	A*03VS
	0301/0320
	030101g

	A*101/A*102
	
	

	A*10101g
	
	

	A*10102g
	
	

	A*110
	
	

	A*2
	
	

	A*200N
	
	

	A*20102
	020102
	020101g

	A*2202
	
	

	A*2312/14/12/14
	2312/2314
	2312/2314

	A*2312/14/15
	2312/2314/2315
	2312/2314/2315

	A*2401
	
	

	A*2402101/02L
	24020101/24020102L
	240201g

	A*24022
	240202
	240201g

	A*2901102N
	29010102N
	2901g

	A*29011N
	
	

	A*294N
	
	

	A*2N
	
	

	A*3
	
	

	A*3
	
	

	A*3/02
	
	

	A*3/A*0101
	
	

	A*300
	
	

	A*300/02
	
	

	A*3013
	3013
	3013

	A*3021
	301102
	3011

	A*312345678
	
	

	A*B03
	
	

	A*B03/A*0101
	
	

	A*11XX
	11
	11

	A*11xx
	11
	11

	11XX
	11
	11

	11xx
	11
	11

	A*11XX/A*2301
	
	

	11XX/2301
	
	

	A*2301/A*11XX
	
	

	2301/11XX
	
	

	A*11xx/A*2301
	
	

	11xx/2301
	
	

	A*2301/A*11xx
	
	

	2301/11xx
	
	

	A*0102
	0102
	0102

	0102
	0102
	0102

	102
	0102
	0102

	0102/0106/0103/0110
	0102/0106/0103/0110
	0102/0103

	0201, 0209, 0243N, 0266
	0201/0209/0243N/0266
	020101g

	A*0102/A*0103/A*2612
	0102/0103/2612
	0102/0103/2612

	A*0104N/A*02010101
	0104N/02010101
	010101g/020101g

	01010102N/010104/0117/020107
	01010102N/010104/0117/020107
	0101/0117/0201

	010105
	010105
	010101g

	A*020170
	
	

	A*260101/2624/2626
	2601g
	2601g

	A*02G1
	020101g
	020101g

	A*7401/7402
	7401g
	7401g

	A*1101/1121N
	110101g
	110101g

5.0 Validation Pipeline Configuration

The validation pipeline depends on a valid Perl environment that can be created by the executing the following script:

BISC/dev/trunk/perl/common/bin/Env/config
This script requires a two parameters (DEVEL_ROOT and COMMON_ROOT) that names the root directories for the development and common roots:

DEVEL_ROOT ::= <some_absolute_path>/BISC/dev/trunk/perl/hla_feature_variation

COMMON_ROOT ::= <some_absolute_path>/BISC/dev/trunk/perl/common
The process requires a standard Perl/Oracle interface environment (DBD::Oracle and associated standard environment variables) for accessing the database table.

Also, if the CPAN Perl modules, Spreadsheet::ParseExcel and XML::Parser have not been installed, then it needs to be installed as follows:

perl –MCPAN –e shell

cpan> install Spreadsheet::ParseExcel
cpan> install XML::Parser
The pipeline is driven by a common property file. The properties are described below in Table 12, “Validation Properties”, with illustrative values:

Table 12, Validation Properties

	Property
	Value
	Description

	dbConfigFile
	<productionDir>/.dbconfig.oracle.mhc_seq_var
	Database configuration file for accessing the mhc_seq_var schema on a database server; a sample file can be found in $DEVEL_ROOT/bin

	debugSwitch
	0
	The Boolean debugging switch (normally set to '0')

	disambiguatorType
	disambiguateAlleleNamesFull
or
disambiguateAlleleNamesFourDigit
	This property defines the type of ambiguity resolution performed:

· disambiguateAlleleNamesFull provides the default ambiguity resolution using the names as given (see Section 4 for the specific semantics)

· disambiguateAlleleNamesFourDigits performs ambiguity resolution using only 4-digit level (peptide) of accuracy (see Appendix D)

	executionDirectory
	<executionDirectory>
	The directory into which the logging and other files are generated (See Section 6)

	hlaAlleleFile
	<some_directory>/hla.txt
or
<some_directory>/hla.csv
or
<some_directory>/hla.xls
	The HLA file can be either a tab-separated txt-file or csv-file or an Excel spreadsheet xls-file containing allele cell data to validate. The content type is defined by the hlaAlleleFileType property

	hlaAlleleFileType
	HLATyping
or
Pypop
or

HLARaw
	This property defines the content type of the hlaAlleleFile and disambiguatedFile property. The HLA file types currently supported include: HLATyping, Pypop, and HLARaw. Appendix B “HLA File Content Formats” defines these content format types

	pypopCategories
	{

 'HardyWeinberg' =>

 {

 chenChisq => '0',

 lumpBelow => '5',

 },

 'Emhaplofreq' =>

 {

 allPairwiseLD => '1',

 allPairwiseLDWithPermu => '1000',

 lociToEstHaplo => '*',

 lociToEstLD => '*',

 numInitCond => '50',

 numPermuInitCond => '5',

 permutationPrintFlag => '1',

 }

}
	This property is a referenced Perl hash that contains the pypop tool property categories as keys and the value is a reference Perl hash that contains the category property name and value pairs that will be used for the run of the pypop tool

The pypop tool properties provided are for illustrative purposes only and can be configured as needs (See the pypop users manual, “Pypop User Guide”)
The following pypop tool property categories are ignored since they are configured directly by this pipeline:

· General

· ParseGenotypeFile

Finally, if either of the following properties in Emphaplofreq

· lociToEstHaplo

· lociToEstLD

is provided and with the value ‘*’, then the pipeline will determine the set of non-trivial loci to use for these properties from the hlaAlleleFile

	pypopTool
	/usr/bin/pypop
	The pathname to the executable pypop tool

	taxonId
	9606
	Taxonomy ID for the species being validated

	toolFiles
	{

preProcessAlleleNames =>

 {

 preProcessedFile =>

 {infix => 'preprocessed',

 suffix => 'txt'},

 },

 validateAlleleNames =>

 {

 validatedFile =>

 {infix => 'validated',

 suffix => 'txt'},

 },

 disambiguateAlleleNames =>

 {

 disambiguatedFile =>

 {infix => 'disambig',
 suffix => 'txt'},

 },

 runPypop =>

 {

 pypopFile =>

 {infix => 'pypop',
 suffix => 'txt'},

 pypopIniFile =>

 {infix => 'pypop',

 suffix => 'ini'},

 }

}
	This value of this property is a referenced Perl hash that defines for each tool what file properties (see Table 13, “Tool File Properties”) will be created by that tool and how to name the file using the hlaAlleleFile for a prefix. These files will be created in the executionDirectory. The hlaAlleleFile prefix is defined to the basename of the file with it suffix ‘.*’ removed. For example, ‘hla.csv’ will have a prefix of ‘hla’ and the file name properties will be defined as follows:

· preProcessedFile=hla.preprocessed.txt
· validatedFile=hla.validated.txt

· disambiguatedFile=hla.disambig.txt

· pypopFile=hla.pypop.txt

· pypopIniFile=hla.pypop.ini

The Tool file properties identified in the toolFiles property in Table 12 above are defined in Table 13, “Tool File Properties” below.
Table 13, Tool File Properties
	Property
	Description

	disambiguatedFile
	This file will be created by the disambiguateAlleleNames.pl tool and will contain the content of the validatedFile that has ambiguities resolved. The content type of the disambiguated file is HLATyping. This file will be a tab-separated file so its suffix will be‘.txt’

	preProcessedFile
	This file is created at the beginning of the HLA QC pipeline by the preProcessAlleleNames.pl tool and will convert the file hlaAlleleFile from the hlaAlleleFileType to HLATyping content format for processing throughout the pipeline.

	pypopFile
	This file will be created by the runPypop.pl tool and will contain the content of the disambiguatedFile in Pypop type content format. This file will be used to run the pypop tool.

	pypopIniFile
	This file will be created by the runPypop.pl tool and will be the ini-configuration file for pypop tool. It will be created using the pypopCategories property

	validatedFile
	This file will be created by the validateAlleleNames.pl tool and will contain the content of the preProcessedFile that has been validated. The content type of the validated file is HLATyping.

The dbConfigFile contains the server, database, username/password, and schema information as follows:

Server
OracleDB

Database
bcdev

Username
mhc_seq_var

Password
mhc_seq_var

SchemaOwner
MHC_SEQ_VAR

The tool that executes the pipeline is defined as follows:

· validatedHla.pl
This tool runs the validation pipeline that consists of a set of incremental step defined in execution order in Table 14, “validateHla.pl Incremental Steps”, below. This tool uses the toolFiles property to create the tool file properties for the run and stores them in the run-specific properties file (hla.properties). If any step fails with any error (see Appendix C “Validation Pipeline Error Messages”), the pipeline will terminate at that step.

Table 14, validateHLa.pl Incremental Steps

	Incremental Step
	Description

	preProcessAlleleNames.pl
	This step pre-processes the file defined by the hlaAlleleFile property into the file defined by the property preProcessedFile. The step converts the content type defined by the hlaAlleleFileType property into the HLATyping content type for processing in the pipeline.

	validateAlleleNames.pl
	This step validates the allele cell content of the preProcessedFile property as specified in Sections 2 & 3 and generates the validated content in validatedFile in the executionDirectory. The file will be a tab-separated file with the content type of HLATyping. The validated content will generate allele names uniformly:

· HLA locus name will be removed

· Names missing zero (‘0’) prefix will have it added

· All serological names are transformed into their corresponding 2-digt format. That is, ‘<digit><digit>00’ and ‘<digit><digit>XX’ serological formats are transformed into the<digit><digit> format

· Deleted and changed names will have the appropriate replacement provided

· NMDP codes are replaced with their constituents alleles

Any cell that contains erroneous data will be replaced with an empty cell, so only validated content will be generated

	disambiguateAlleleNames.pl
	This step takes the validatedFile, applies the ambiguity resolution rules defined in the paper, “Common and Well-Documented Alleles”, Human Immunology 68, 392–417 (2007), to the content, and generates the disambiguatedFile in the executionDirectory. Only cells that can have their ambiguities resolved are generated into this file, all other cells are left empty. The content type will be HLATyping

	runPypop.pl
	This step creates the pypop input file pypopFile from the file disambiguatedFile, creates the pypop configuration (ini) file pypopIniFile from the pypopCategories, and finally runs the pypop tool as defined by pypopTool. The General and ParseGenotypeFile pypop tool category properties are managed and generated by this processing step into the pypopInifFile. Also, if the pypop tool properties contain property lociToExtLD or lociToEstHaplo, this step determines the set of nontrivial loci to use for these properties before generating the ini-file and executing pypop.

This tool depends on having the pypop tool installed. The installation process is contained in Appendix A, “Installing Pypop”.

	generatePypopOutput.pl
	This optional tool can be run as post-process step after the pypop tool has been executed to generated pypop output that is not truncated by long cell names. It uses the same properties as the runPypop.pl tool and generates a pypop output file

The following Table 15, “Validation Property Allocation”, identifies the properties that are used by each tool:

Table 15, Validation Property Allocation

	Property
	preProcessAlleleNames
	validateAlleleNames.pl
	disambiguateAlleleNames.pl
	runPypop.pl

	dbConfigFile
	X
	X
	X
	X

	debugSwitch
	X
	X
	X
	X

	executionDirectory
	X
	X
	X
	X

	disambiguatorType
	
	
	X
	

	disambiguatedFile
	
	
	X
	X

	hlaAlleleFile
	X
	
	
	

	hlaAlleleFileType
	X
	
	
	

	preprocessedFile
	X
	X
	
	

	pypopCategories
	
	
	
	X

	pypopFile
	
	
	
	X

	pypopIniFile
	
	
	
	X

6.0 Pipeline Execution Process

Assume that you are focused in some directory where you can execute the process and have created the <property_file> as described in Section 5. This process assumes that BISC/dev/trunk/perl has been checked out of SVN to <some_absolute_path>. Using a tcsh shell, the execution process is provided below:

> <some_absolute_path>/BISC/dev/trunk/perl/common/bin/Env/config \
 <some_absolute_path>/BISC/dev/trunk/perl/hla_feature_variation \
 <some_absolute_path>/BISC/dev/trunk/perl/common
> setenv HLA_OUT hla.out
> /bin/rm -f $HLA_OUT
> $DEVEL_BIN/validateHla.pl -P <property_file> >& $HLA_OUT&

7.0 Pipeline Output

The validation pipeline process will create the following logging files in the execution directory, executionDirectory. Assuming that the hlaAlleFile is defined to be <some_directory>/hla.csv, then the logging files generated will include:

· validateHla.hla.log
· preProcessAlleleNames.hla.log
· validateAlleleNames.hla.log
· disambiguateAlleleNames.hla.log
· runPypop.hla.log
The logging files error information on each non-null hla_cell, notes that specify transformations on the cell, error cells and note cell summary tables, and counting statistic summaries at the end of the log. The counting statistics include the following:

· Cell data type (changed, deleted, g-code, NMDP code, serological, zero-prefix) by locus

· Cell error/correct count by locus

· Cell CWD/rare allele count by locus

· Cell not-null/null count by locus

· Rare allele counts by locus

· Error counts per error type per category

Also, during the execution of the incremental steps, several files will be generated in the executionDirectory as defined in Section 6 as follows:

· hla.properties

· hla.disambig.txt

· hla.preprocessed.txt

· hla.pypop.ini

· hla.pypop.txt

· hla.validated.txt
The execution of runPypop.pl creates pypop specific files defined in Table 16, “Pypop Tool Output” below:
Table 16, Pypop Tool Output
	Filename
	Description

	hla.pypop-out.txt
	This file is the text output file for the pypop tool run

	hla.pypop-out.xml
	This file is the xml output file for the pypop tool run

An optional pypop output file (to prevent truncation of long cell data) can be generated using the tool generatePypopOutput.pl can be executed as follows:

> $DEVEL_BIN/runPypopOutput.pl –P hla.properties >>& $HLA_OUT&

The tool will generate the output file hla.pypop.out.txt and the logging file runPypopOutput.hla.log. The file hla.pypop.out.txt is similar to hla.pypop-out.txt but avoid truncation of long cell data.
During execution logging output can include error messages that are specified in Appendix C, “Validation Pipeline Error Messages”. The next subsections illustrate the logging file output for validateAlleleNames.pl and disambiguateAlleleNames.pl, respectively.

7.1 Example Output for validateAlleleName.pl

As an example of log-file content for allele name validation, the following tables: Table 17, “Illustrative Cell Validation Results”, Table 18 “Illustrative Cell Validation Cell Summaries”, Table 19 “Illustrative Cell Validation Counting Statistics Summary” and, Table 20, “Illustrative Cell Validation Error Message Summary”, illustrate cell validation results and error message summary, respectively.

Table 17, Illustrative Cell Validation Results
	Cell Message Content

	###################################

###

Row Num = 1

Row Id = 0001

Col Name = HLA-A Allele 1

Cell = 010101g/A*0101

###

###################################

ERROR:

ERROR: QUALITY-CONTROL-ERROR: 100021:

ERROR: Allele cell skipped, since multi-allele cell contains a gcode

ERROR: cell = 010101g/A*0101

ERROR: cell type = digit_gcode

ERROR: main comp = 010101g

ERROR:

	###################################

###

Row Num = 14

Row Id = 0014

Col Name = HLA-A Allele 1

Cell = 1010102N

###

###################################

Allele cell main component has odd-number of digits

 locus = HLA-A

 main comp = 1010102N

 allele comps = (1010102N)

ALLELE COMP -> 1010102N

Allele found in current release

 msg = Allele found in current alleles with unique value (1-n)

 locus = HLA-A

 allele = 01010102N

 serological = No

 allele type = Rare allele

 gcode name = Unknown
 alleles found = (A*01010102N)

NOTE: The odd-number of digits allele is a current allele

NOTE: with the addition of a zero (0) prefix

NOTE: locus = HLA-A

NOTE: allele = 1010102N

NOTE: even allele = 01010102N

	###################################

###

Row Num = 70

Row Id = 0070

Col Name = HLA-A Allele 1

Cell = A*03BRHJ

###

###################################

ERROR:

ERROR: QUALITY-CONTROL-ERROR: 100010:

ERROR: First NMDP 4-digit code has different first 2-digits than cell

ERROR: cell = A*03BRHJ

ERROR: cell digits = 03

ERROR: nmdp data = (0201, 0209, 0243N, 0266, 0275, 0283N, 0289)

ERROR:

	###################################

###

Row Num = 74

Row Id = 0074

Col Name = HLA-A Allele 1

Cell = A*10102g

###

###################################

ERROR:

ERROR: QUALITY-CONTROL-ERROR: 100006:

ERROR: Allele cell component is a gcode with odd-number of digits

ERROR: locus_name = HLA-A

ERROR: cell comp = A*10102g

ERROR: type = gcode

ERROR:

	###################################

###

Row Num = 79

Row Id = 0079

Col Name = HLA-A Allele 1

Cell = A*2202

###

###################################

Allele cell main component

 locus = HLA-A

 main comp = A*2202

 allele comps = (2202)

ALLELE COMP -> 2202

ERROR:

ERROR: QUALITY-CONTROL-ERROR: 100013:

ERROR: Allele cell component not found in current alleles

ERROR: locus = HLA-A

ERROR: comp = 2202

ERROR:

Table 18, Illustrative Cell ValidationCell Summaries

	Cells Summary

	#####################

###

Error Cells

###

#####################

Row Num Row Id Col Name Cell Data Err Num Error Message

------- ------ -------- --------- ------- -------------

 1 0001 HLA-A Allele 1 010101g/A*0101 100021 Allele cell skipped, since multi-allele cell contains a gcode

 4 0004 HLA-A Allele 1 0110/106 100008 Allele cell component has an odd (1 or 3) number of digits

 8 0008 HLA-A Allele 1 02AMJM/A*0101 100025 Allele cell skipped, since multi-allele cell contains an NMDP code

 10 0010 HLA-A Allele 1 03/02 100019 Allele cell skipped, since cell contains multiple serological alleles

 12 0012 HLA-A Allele 1 0300/02 100019 Allele cell skipped, since cell contains multiple serological alleles

 13 0013 HLA-A Allele 1 1010.0 100013 Allele cell component not found in current alleles

 18 0018 HLA-A Allele 1 110/106 100008 Allele cell component has an odd (1 or 3) number of digits

 20 0020 HLA-A Allele 1 2202 100013 Allele cell component not found in current alleles

 24 0024 HLA-A Allele 1 3/02 100019 Allele cell skipped, since cell contains multiple serological alleles

 26 0026 HLA-A Allele 1 300/02 100019 Allele cell skipped, since cell contains multiple serological alleles

 28 0028 HLA-A Allele 1 5101/17/21 100013 Allele cell component not found in current alleles

 32 0032 HLA-A Allele 1 A*0101.1N 600003 Allele cell component does not have an expected type

 33 0033 HLA-A Allele 1 A*0101/0200 100009 Allele cell component is a serological component

 34 0034 HLA-A Allele 1 A*0101/02AMJM 100023 Multi-allele cell contains an NMDP code

 35 0035 HLA-A Allele 1 A*0101/A*0101011g 100024 Multi-allele cell contains a gcode

 36 0036 HLA-A Allele 1 A*0101/A*010101g 100024 Multi-allele cell contains a gcode

 37 0037 HLA-A Allele 1 A*0101/A*02 100012 Allele cell component has a locus prefix and two digits

 38 0038 HLA-A Allele 1 A*0101/A*0200 100009 Allele cell component is a serological component

 39 0039 HLA-A Allele 1 A*0101/A*0212AMJM 100023 Multi-allele cell contains an NMDP code

 40 0040 HLA-A Allele 1 A*0101/A*102 100008 Allele cell component has an odd (1 or 3) number of digits

 41 0041 HLA-A Allele 1 A*0101/A*3 100008 Allele cell component has an odd (1 or 3) number of digits

 42 0042 HLA-A Allele 1 A*0101/A*B03 600002 Allele cell component does not conform expected syntax

 43 0043 HLA-A Allele 1 A*0101011g 100006 Allele cell component is a gcode with odd-number of digits

 44 0044 HLA-A Allele 1 A*0101011g/A*0101 100006 Allele cell component is a gcode with odd-number of digits

 46 0046 HLA-A Allele 1 A*010101g/A*0101 100021 Allele cell skipped, since multi-allele cell contains a gcode

 47 0047 HLA-A Allele 1 A*010102g 100011 gcode is not in the recognized list of gcodes

 51 0051 HLA-A Allele 1 A*0200N 100018 Allele cell skipped, since serological alleles cannot have an allele suffix

 55 0055 HLA-A Allele 1 A*0212AMJM 100007 Allele cell component is an NMDP code without two-digits

 56 0056 HLA-A Allele 1 A*0212AMJM/A*0101 100007 Allele cell component is an NMDP code without two-digits

 57 0057 HLA-A Allele 1 A*021AMJM 100007 Allele cell component is an NMDP code without two-digits

 61 0061 HLA-A Allele 1 A*02AMJM/A*0101 100025 Allele cell skipped, since multi-allele cell contains an NMDP code

 63 0063 HLA-A Allele 1 A*02N 100018 Allele cell skipped, since serological alleles cannot have an allele suffix

 65 0065 HLA-A Allele 1 A*03/02 100019 Allele cell skipped, since cell contains multiple serological alleles

 67 0067 HLA-A Allele 1 A*0300/02 100019 Allele cell skipped, since cell contains multiple serological alleles

 69 0069 HLA-A Allele 1 A*0312345678 600004 Allele cell component does not conform to expected length

 70 0070 HLA-A Allele 1 A*03BRHJ 100010 First NMDP 4-digit code has different first 2-digits than cell

 72 0072 HLA-A Allele 1 A*101/A*102 100017 Allele cell skipped, since main component is full name with

 73 0073 HLA-A Allele 1 A*10101g 100006 Allele cell component is a gcode with odd-number of digits

 74 0074 HLA-A Allele 1 A*10102g 100006 Allele cell component is a gcode with odd-number of digits

 75 0075 HLA-A Allele 1 A*110 100017 Allele cell skipped, since main component is full name with

 76 0076 HLA-A Allele 1 A*2 100017 Allele cell skipped, since main component is full name with

 77 0077 HLA-A Allele 1 A*200N 100017 Allele cell skipped, since main component is full name with

 79 0079 HLA-A Allele 1 A*2202 100013 Allele cell component not found in current alleles

 82 0082 HLA-A Allele 1 A*2401 100022 Allele cell component has been deleted, but not replaced

 86 0086 HLA-A Allele 1 A*29011N 100015 Allele cell component has odd-number of digits and is not changed

 87 0087 HLA-A Allele 1 A*294N 100017 Allele cell skipped, since main component is full name with

 88 0088 HLA-A Allele 1 A*2N 100017 Allele cell skipped, since main component is full name with

 89 0089 HLA-A Allele 1 A*3 100017 Allele cell skipped, since main component is full name with

 90 0090 HLA-A Allele 1 A*3 100017 Allele cell skipped, since main component is full name with

 91 0091 HLA-A Allele 1 A*3/02 100017 Allele cell skipped, since main component is full name with

 92 0092 HLA-A Allele 1 A*3/A*0101 100017 Allele cell skipped, since main component is full name with

 93 0093 HLA-A Allele 1 A*300 100017 Allele cell skipped, since main component is full name with

 94 0094 HLA-A Allele 1 A*300/02 100017 Allele cell skipped, since main component is full name with

 97 0097 HLA-A Allele 1 A*312345678 600004 Allele cell component does not conform to expected length

 98 0098 HLA-A Allele 1 A*B03 600002 Allele cell component does not conform expected syntax

 99 0099 HLA-A Allele 1 A*B03/A*0101 600002 Allele cell component does not conform expected syntax

 104 0104 HLA-A Allele 1 A*11XX/A*2301 100019 Allele cell skipped, since cell contains multiple serological alleles

 105 0105 HLA-A Allele 1 11XX/2301 100019 Allele cell skipped, since cell contains multiple serological alleles

 106 0106 HLA-A Allele 1 A*2301/A*11XX 100009 Allele cell component is a serological component

 107 0107 HLA-A Allele 1 2301/11XX 100009 Allele cell component is a serological component

 108 0108 HLA-A Allele 1 A*11xx/A*2301 100019 Allele cell skipped, since cell contains multiple serological alleles

 109 0109 HLA-A Allele 1 11xx/2301 100019 Allele cell skipped, since cell contains multiple serological alleles

 110 0110 HLA-A Allele 1 A*2301/A*11xx 100009 Allele cell component is a serological component

 111 0111 HLA-A Allele 1 2301/11xx 100009 Allele cell component is a serological component

 121 0121 HLA-A Allele 1 A*020170 100014 Allele cell component not found in current alleles, but

	####################

###

Note Cells

###

####################

Row Num Row Id Col Name Cell Data Note Message

------- ------ -------- --------- ------------

 14 0014 HLA-A Allele 1 1010102N The odd-number of digits allele is a current allele

 15 0015 HLA-A Allele 1 110 Added zero (0) prefix to allele digits

 16 0016 HLA-A Allele 1 110/0106 Added zero (0) prefix to allele digits

 17 0017 HLA-A Allele 1 110/06 Added zero (0) prefix to allele digits

 21 0021 HLA-A Allele 1 2402101 Current allele found in changed alleles

 22 0022 HLA-A Allele 1 294N Added zero (0) prefix to allele digits

 29 0029 HLA-A Allele 1 68011/0101 Current allele found in changed alleles

 30 0030 HLA-A Allele 1 68011/2402101 Current allele found in changed alleles

 31 0031 HLA-A Allele 1 A*0101.1 Removed decimal suffix from component before processing

 52 0052 HLA-A Allele 1 A*020101g The cell is a CWD Suggested name and is returned

 53 0053 HLA-A Allele 1 A*02011 Current allele found in changed alleles

 54 0054 HLA-A Allele 1 A*020120 Allele has been deleted

 58 0058 HLA-A Allele 1 A*02202 Current allele found in changed alleles

 68 0068 HLA-A Allele 1 A*03013 Current allele found in changed alleles

 78 0078 HLA-A Allele 1 A*20102 The odd-number of digits allele is a current allele

 80 0080 HLA-A Allele 1 A*2312/14/12/14 The allele appears more than once in the cell

 83 0083 HLA-A Allele 1 A*2402101/02L Current allele found in changed alleles

 84 0084 HLA-A Allele 1 A*24022 Current allele found in changed alleles

 85 0085 HLA-A Allele 1 A*2901102N Current allele found in changed alleles

 96 0096 HLA-A Allele 1 A*3021 Allele has been deleted

 114 0114 HLA-A Allele 1 102 Added zero (0) prefix to allele digits

 122 0122 HLA-A Allele 1 A*260101/2624/2626 The cell is an Anthony Nolan ambiguity code

 123 0123 HLA-A Allele 1 A*02G1 The cell is an Anthony Nolan ambiguity code

 124 0124 HLA-A Allele 1 A*7401/7402 The cell is an Anthony Nolan ambiguity code

 125 0125 HLA-A Allele 1 A*1101/1121N The cell is a CWD Suggested name and is returned

Table 19, Illustrative Cell Validation Counting Statistics Summary

	Counting Summary

	##

###

Data Types By Locus (not necessary distinct)

Locus Name Data Type Count COUNT

---------- --------------- -----

HLA-A Changed Name 12

HLA-A Deleted Name 3

HLA-A G-Code 6

HLA-A NMDP Code 3

HLA-A Serological 13

HLA-A Zero Prefix 6

TOTAL 43

###

##

	##

###

Error Counts By Locus

Locus Name Error Count COUNT

---------- ----------- -----

HLA-A Correct 60

HLA-A Error 65

TOTAL 125

###

##

	##

###

Common and Well-Documented (CWD) Data by Locus

Locus Name CWD Data COUNT

---------- -------- -----

HLA-A CWD allele 37

HLA-A Rare Allele 83

TOTAL 120

###

##

	#######################################

###

Cell Counts By Locus

Locus Name Cell Count COUNT

---------- ---------- -----

HLA-A Not Null 125

HLA-A Null 125

HLA-B Null 250

HLA-Cw Null 250

HLA-DPA1 Null 250

HLA-DPB1 Null 250

HLA-DQA1 Null 250

HLA-DQB1 Null 250

HLA-DRB1 Null 250

HLA-DRB3 Null 250

HLA-DRB4 Null 250

HLA-DRB5 Null 250

TOTAL 2750

###

#######################################

	##

###

Rare Alleles By Locus

Locus Name Rare Allele COUNT

---------- ----------- -----

HLA-A 01010102N 3

HLA-A 010104 1

HLA-A 010105 1

HLA-A 0106 5

HLA-A 0110 8

HLA-A 0117 1

HLA-A 0122N 1

HLA-A 020101 1

HLA-A 02010102L 2

HLA-A 02010103 2

HLA-A 020102 1

HLA-A 020107 1

HLA-A 020108 2

HLA-A 020111 2

HLA-A 020114 2

HLA-A 020115 2

HLA-A 020118 1

HLA-A 022002 2

HLA-A 0243N 6

HLA-A 0266 5

HLA-A 0275 3

HLA-A 0283N 3

HLA-A 0289 3

HLA-A 0294N 3

HLA-A 0297 2

HLA-A 0320 1

HLA-A 1121N 1

HLA-A 2312 2

HLA-A 2314 2

HLA-A 2315 1

HLA-A 240202 1

HLA-A 2624 1

HLA-A 2626 1

HLA-A 29010102N 1

HLA-A 301102 1

HLA-A 3013 2

HLA-A 9232 2

HLA-A 9234 2

HLA-A 9240 2

TOTAL 83

###

##

Table 20, Illustrative Cell Validation Error Message Summary
	Error Category Summary

	##

###

Category Errors

category

name = qualityControl::Allele::Validator

number = 100000

errors

100006 = 4 (Allele cell component is a gcode with odd-number of digits)

100007 = 3 (Allele cell component is an NMDP code without two-digits)

100008 = 4 (Allele cell component has an odd (1 or 3) number of digits)

100009 = 6 (Allele cell component is a serological component)

100010 = 1 (First NMDP 4-digit code has different first 2-digits than cell)

100011 = 1 (gcode is not in the recognized list of gcodes)

100012 = 1 (Allele cell component has a locus prefix and two digits)

100013 = 6 (Allele cell component not found in current alleles)

100014 = 1 (Allele cell component not found in current alleles, but)

100015 = 1 (Allele cell component has odd-number of digits and is not changed)

100017 = 12 (Allele cell skipped, since main component is full name with)

100018 = 2 (Allele cell skipped, since serological alleles cannot have an allele suffix)

100019 = 10 (Allele cell skipped, since cell contains multiple serological alleles)

100021 = 2 (Allele cell skipped, since multi-allele cell contains a gcode)

100022 = 1 (Allele cell component has been deleted, but not replaced)

100023 = 2 (Multi-allele cell contains an NMDP code)

100024 = 2 (Multi-allele cell contains a gcode)

100025 = 2 (Allele cell skipped, since multi-allele cell contains an NMDP code)

###

##

	##

###

Category Errors

category

name = qualityControl::Allele

number = 600000

errors

600002 = 3 (Allele cell component does not conform expected syntax)

600003 = 4 (Allele cell component does not have an expected type)

600004 = 2 (Allele cell component does not conform to expected length)

600005 = 6 (Allele cell skipped, since cell has syntax errors)

###

##

7.2 Example Output for disambiguateAlleleNames.pl

As an example of log-file content for allele cell ambiguity resolution, the following tables: Table 21, “Illustrative Cell Ambiguity Resolution Results”, Table22 “Illustrative Cell Ambiguity Cell Summaries”, Table 23, “Illustrative Cell Ambiguity Counting Statistics Sum”, and Table 24, “Illustrative Ambiguity Resolution Error Message Summary”, illustrate cell ambiguity resolution results and error message summary, respectively.

Table 21, Illustrative Cell Ambiguity Resolution Results
	Cell Message Content

	###################################

###

Row Num = 3

Row Id = 0003

Col Name = HLA-A Allele 1

Cell = 0110/0106

###

###################################

NOTE: Cell contains multiple alleles (only rare alleles--leaving 'as-is')

NOTE: alleles = (0110, 0106)
NOTE: cell returned = 0110/0106
NOTE: rare_alleles = (0106, 0110)

	##

###

Row Num = 115

Row Id = 0115

Col Name = HLA-A Allele 1

Cell = 0102/0106/0103/0110

###

##

ERROR:

ERROR: QUALITY-CONTROL-ERROR: 500006:

ERROR: Cell containing multiple alleles contains more than one gcode and/or cwd allele

ERROR: alleles = (0102, 0106, 0103, 0110)
ERROR: cell returned = 0102/0103

ERROR: gcodes =

ERROR: cwd alleles = (0102, 0103)

ERROR: rare alleles = (0106, 0110)

ERROR:

	###################################

###

Row Num = 117

Row Id = 0117

Col Name = HLA-A Allele 1

Cell = 0102/0103/2612

###

###################################

ERROR:

ERROR: QUALITY-CONTROL-ERROR: 500006:

ERROR: Cell containing multiple alleles contains more than one gcode and/or cwd allele

ERROR: alleles = (0102, 0103, 2612)
ERROR: cell returned = 0102/0103
ERROR: gcodes = 0102/0103/2612

ERROR: cwd alleles = (0102, 0103, 2612)

ERROR: rare alleles =

ERROR:

	###################################

###

Row Num = 118

Row Id = 0118

Col Name = HLA-A Allele 1

Cell = 0104N/02010101

###

###################################

ERROR:

ERROR: QUALITY-CONTROL-ERROR: 500006:

ERROR: Cell containing multiple alleles contains more than one gcode and/or cwd allele

ERROR: alleles = (A*0104N, A*02010101)
EEEOR: cell returned = 010101g/020101

ERROR: gcodes = (010101g [0104], 020101g [0201])

ERROR: cwd alleles =

ERROR: rare alleles =

ERROR:

	###

###

Row Num = 119

Row Id = 0119

Col Name = HLA-A Allele 1

Cell = 01010102N/010104/0117/020107

###

###

NOTE: Cell contains multiple alleles (only rare alleles--leaving 'as-is')

NOTE: alleles = (01010102N, 010104, 0117, 020107)

NOTE: cell returned = 0101/0117/0201

NOTE: rare_alleles = (01010102N, 010104, 0117, 020107)

Table 22, Illustrative Cell Ambiguity Cell Summaries

	Cell Summaries

	#####################

###

Error Cells

###

#####################

Row Num Row Id Col Name Cell Data Err Num Error Message

------- ------ -------- --------- ------- -------------

 29 0029 HLA-A Allele 1 680101/0101 500006 Cell containing multiple alleles contains more than one gcode and/or cwd allele

 30 0030 HLA-A Allele 1 680101/24020101 500006 Cell containing multiple alleles contains more than one gcode and/or cwd allele

 115 0115 HLA-A Allele 1 0102/0106/0103/0110 500006 Cell containing multiple alleles contains more than one gcode and/or cwd allele

 117 0117 HLA-A Allele 1 0102/0103/2612 500006 Cell containing multiple alleles contains more than one gcode and/or cwd allele

 118 0118 HLA-A Allele 1 0104N/02010101 500006 Cell containing multiple alleles contains more than one gcode and/or cwd allele

	####################

###

Note Cells

###

####################

Row Num Row Id Col Name Cell Data Note Message

------- ------ -------- --------- ------------

 3 0003 HLA-A Allele 1 0110/0106 Cell contains multiple alleles (only rare alleles--leaving 'as-is')

 16 0016 HLA-A Allele 1 0110/0106 Cell contains multiple alleles (only rare alleles--leaving 'as-is')

 17 0017 HLA-A Allele 1 0110/0106 Cell contains multiple alleles (only rare alleles--leaving 'as-is')

 49 0049 HLA-A Allele 1 0110/0106 Cell contains multiple alleles (only rare alleles--leaving 'as-is')

 80 0080 HLA-A Allele 1 2312/2314 Cell contains multiple alleles (only rare alleles--leaving 'as-is')

 81 0081 HLA-A Allele 1 2312/2314/2315 Cell contains multiple alleles (only rare alleles--leaving 'as-is')

 119 0119 HLA-A Allele 1 01010102N/010104/0117/020107 Cell contains multiple alleles (only rare alleles--leaving 'as-is')

Table 23, Illustrative Cell Ambiguity Counting Statistics Summary

	Counting Summary

	##

###

Error Counts By Locus

Locus Name Error Count COUNT

---------- ----------- -----

HLA-A Correct 55

HLA-A Error 5

TOTAL 60

###

##

	#######################################

###

Cell Counts By Locus

Locus Name Cell Count COUNT

---------- ---------- -----

HLA-A Not Null 60

HLA-A Null 190

HLA-B Null 250

HLA-Cw Null 250

HLA-DPA1 Null 250

HLA-DPB1 Null 250

HLA-DQA1 Null 250

HLA-DQB1 Null 250

HLA-DRB1 Null 250

HLA-DRB3 Null 250

HLA-DRB4 Null 250

HLA-DRB5 Null 250

TOTAL 2750

###

#######################################

Table 24, Cell Ambiguity Resolution Error Message Summary
	Error Category Summary

	##

###

Category Errors

category

name = qualityControl::Allele::Disambiguator

number = 500000

errors

500006 = 5 (Cell containing multiple alleles contains more than one gcode and/or cwd allele)

###

##

APPENDIX A Installing Pypop

A.1
System Requirements
The following system configuration is required:

· C compiler including make or gmake
· Python2.4 or Python2.5
· Supporting modules (can be installed by ‘yum install’)

· gsl-devel

· libxml2-python

· libxslt

· libxslt-python

· numpy

· python-devel

· swig
A.2
Installation Process
The following installation process must be followed:
1. Acquire and untar pypop. Currently, using the beta-version Get the (beta-version) pypop source and untar it (tar -xzf)
a. In a browser execute URL and download the tar-gzip file:
http://www.pypop.org/pypop-0.7.0rc2.tar.gz
b. Untar file: tar –xzf <tar-gzip-file>
2. To get avoid a potential issue with the hwe-enumeration module comment it out of the setup script (setup.py) as follows:
a. Replace the following code fragment:
 if not(distrib_version):
 extensions.append(ext_HweEnum)
 with the code fragment:
 if not(distrib_version):
 ## extensions.append(ext_HweEnum)
 pass
3. To avoid an error having to do with Python shape, comment out line 404 in the utilities class file (Utils.py) as follows:

a. Replace the following code fragment:
 self.shape = self.array.shape
 with the code fragment
 ##self.shape = self.array.shape
4. Run the pypop following installation
a. Set directory created in Step 1, remove the build directory, and set C compilation optimization levels:
· cd <root>/pypop-0.7.0rc2

· /bin/rm -rf build

· setenv CFLAGS "-O3 -funroll-loops -Wall"

b. Set defines for haplo frequency C-code

· cd emhaplofreq

· open file, emhaplofreq.h, and change to following defines:

1. #define MAX_ROWS 2047
2. #define MAX_GENOS 100000
c. Build pypop and its libraries using the command, python setup.py build
d. Install pypop binary into system (MUST BE ROOT)

· su root ...

· source ~/.cshrc (or other root configuration file for shell)
· python setup.py install

· exit
A.3
Software Version
The following Table A.1, “Software Versions” illustrates the software versions used when running the installation process:

Table A.1, Software Versions
	Tool/Library
	Versions

	python*
	python-2.5-12.fc7
python-crypto-2.0.1-7.1.fc7
python-devel-2.5-12.fc7
python-libs-2.5-12.fc7
python-numeric-24.2-4.fc7
python-pyblock-0.27-3
python-setuptools-0.6c7-1.fc7
python-urlgrabber-2.9.9-5.fc7

	gsl-devel*
	gsl-devel-1.8-3.fc7

	libxml2-python*
	libxml2-python-2.6.29-1.fc7

	libxslt*
	libxslt-1.1.21-1.fc7
libxslt-devel-1.1.21-1.fc7
libxslt-python-1.1.21-1.fc7

	numpy*
	numpy-1.0.3-0.1.fc7

	swig*
	swig-1.3.31-0.fc7

	gcc*
	gcc-objc-4.1.2-27.fc7
gcc-gfortran-4.1.2-27.fc7
gcc-objc++-4.1.2-27.fc7
gcc-c++-4.1.2-27.fc7
gcc-java-4.1.2-27.fc7
gcc-4.1.2-27.fc7
gcc-gnat-4.1.2-27.fc7

APPENDIX B HLA File Content Formats
This Appendix illustrates acceptable formats for the HLA allele file, hlaAlleleFile. Currently, the formats include: HLA Typing Result templates (hlaAlleleFileType property equals HLATyping) and Pypop tool format (hlaAlleleFileType property equals Pypop). Also, there are miscellaneous types such as the HLA Raw format (hlaAlleleFileType property equals HLARaw). These files can be in either tab-separated (.txt or .csv) or Excel spreadsheet (.xls) file format.

B.1
HLA Typing Result Template Content Format

The HLA Typing Result Template format is prescribed by the Immport upload system as the format for accepting HLA typing results. The format is illustrated in Table B.1, “HLA Typing Result Template Format”.

Table B.1, HLA Typing Result Template Format
	HLA Typing Results
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Please do not delete or edit this column
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Column Name
	Experiment Sample User-Defined ID*
	HLA-A Allele 1
	HLA-A Allele 2
	HLA-B Allele 1
	HLA-B Allele 2
	HLA-C Allele 1
	HLA-C Allele 2
	HLA-DRB1 Allele
1
	HLA-DRB1 Allele
2
	HLA-DPA1 Allele 1
	HLA-DPA1 Allele 2
	HLA-DPB1 Allele 1
	HLA-DPB1 Allele 2
	HLA-DQA1 Allele
1
	HLA-DQA1 Allele
2
	HLA-DQB1 Allele
1
	HLA-DQB1 Allele
2

	
	3600
	-
	-
	-
	-
	-
	-
	0101
	0301
	-
	-
	-
	-
	0101
	0501
	0501
	0201

	
	3601
	-
	-
	-
	-
	-
	-
	0701
	1501
	-
	-
	-
	-
	0102
	0201
	0602
	0201

B.2
Pypop Tool Input File Content Format

The pypop tool input file format is prescribed the pypop tool. The format is illustrated in Table B.2, “Pypop Tool Input File Format”.

Table B.2, Pypop Input File Tool Format
	labcode
	method
	ethnic
	contin
	collect
	latit
	longit
	complex
	
	
	
	
	
	
	
	
	
	

	BSCTST
	12thWorkshop
	TestPopulation
	Europe

	3
	
	
	
	
	
	
	
	
	
	

	populat
	id
	a_1
	a_2
	b_1
	b_2
	c_1
	c_2
	drb1_1
	drb1_2
	dpa1_1
	dpa1_2
	dpb1_1
	dpb1_2
	dqa1_1
	dqa1_2
	dqb1_1
	dqb1_2

	Test001
	3600

	0101
	0301

	0101
	0501
	0501
	0201

	Test001
	3601

	0701
	1501

	0102
	0201
	0602
	0201

B.3
HLA Raw Miscellaneous Input File Content Format
The HLA Raw content format is a format that is used to represent raw HLA data. The format is illustrated in Table B.3, “HLA Raw Input File Format”.

Table B.3, HLA Raw Input File Format

	
	
	DPA1
	
	DPB1
	
	DQA1
	
	DQB1
	
	HLA-A
	
	HLA-B
	
	

	Well ID
	Sample ID
	Allele1
	Allele2
	Allele1
	Allele2
	Allele1
	Allele2
	Allele1
	Allele2
	Allele1
	Allele2
	Allele1
	Allele2
	Sample ID

	
	103961
	"010301,0109"
	(homozygote)
	"020102,020106"
	040101
	"010201,010202"
	"050101,0503,0505"
	"030101,030102,0309,0316"
	"0602,061101"
	"01010101,01010102N,010103,0104N,0109,0111N,010102,0108"
	"02010101,02010102L,020102,020104,020107,020108,020109,020110,020111,0209,0230,0231,0233,0242,0243N,0253N,0259,0266,0267,027401,027402,0275,0277,0282N,0283N"
	"080101,080102,0808N,0818,0819N,0822,0823"
	4901
	103961

	
	
	"010301,0109"
	0109
	"020102,020106"
	040102
	
	
	
	
	"01010101,01010102N,010103,0104N,0109,0111N,010102,0108"
	0236
	0803
	5001
	

	
	220716
	"010301,0109"
	(homozygote)
	040101
	(homozygote)
	0103
	"050101,0503,0505"
	0316
	0603
	repeat
	repeat
	"350101,350103,350104,3507,3511,3523,3529,3540N,3541,3542,3548,3553N,3557"
	"44020101,44020102S,440203,4419N,4423N,4424,4427,4433"
	220716

	
	
	"010301,0109"
	0109
	9901
	(homozygote)
	
	
	0316
	0614
	"01010101,01010102N,010103,0104N,0109,0111N,010102,0108"
	0236
	"350101,350103,350104,3507,3511,3523,3529,3540N,3541,3542,3548,3553N,3557"
	"440202,4411"
	

	
	-ve
	NA
	NA
	NA
	NA
	NA
	NA
	NA
	NA
	NA
	NA
	NA
	NA
	-ve

APPENDIX C Validation Pipeline Error Messages
There is several error categories defined for the validation pipeline. These categories are defined by a numeric range as follows:

Errors messages for each category are specified in the subsections below. The notation, ‘__N__’, represents the position of the explicit value for a given error.
	Error Category
	Error Number

	Allele Validator
	100000

	Tools
	200000

	HLA File
	300000

	Pypop
	400000

	Allele Disambiguator
	500000

	Allele
	600000

	Pre-Process
	700000

	HLA File Converter
	800000

	Lookup Tables Manager
	900000

C.1
Allele Validator Errors

The Allele Validator error messages are specified in Table C.1, “Allele Validation Error Messages”. These errors are not immediately fatal since they are registered (written to the log-file and counted). Anyone of these error messages will cause the validateAlleleNames.pl script to ultimately fail at the end of the processing step.

Table C.1, Allele Validation Error Messages
	Message Number
	Error Message

	100006
	Allele cell component is a gcode with odd-number of digits

 locus_name = __1__

 cell comp = __2__

 type = __3__

	100007
	Allele cell component is an NMDP code without two-digits

 locus_name = __1__

 cell comp = __2__

 type = __3__

	100008
	Allele cell component has an odd (1 or 3) number of digits

 cell comp = __1__

	100009
	Allele cell component is a serological component

 cell comp = __1__

	100010
	First NMDP 4-digit code has different first 2-digits than cell

 cell = __1__

 cell digits = __2__

 nmdp data = (__3__)

	100011
	Gcode is not in the recognized list of gcodes
 cell = __1__

	100012
	Allele cell component has a locus prefix and two digits

 cell comp = __1__

	100013
	Allele cell component not found in current alleles

 locus = __1__

 comp = __2__

	100014
	Allele cell component not found in current alleles, but

its first __3__ digits are present for alleles in locus

 locus = __1__

 comp = __2__

	100015
	Allele cell component has odd-number of digits and is not changed

 locus = __1__

 comp = __2__

	100017
	Allele cell skipped, since main component is full name with

an odd (1 or 3) number of digits

 cell comp = __1__

	100018
	Allele cell skipped, since serological alleles cannot have an allele suffix
 cell comp = __1__

	100019
	Allele cell skipped, since cell contains multiple serological alleles
 cell = __1__

 main comp = __2__

	100021
	Allele cell skipped, since multi-allele cell contains a gcode
 cell = __1__

 cell type = __2__

 main comp = __3__

	100022
	Allele cell component has been deleted, but not replaced

 comp = __1__

	100023
	Multi-allele cell contains an NMDP code
 comp = __1__

	100024
	Multi-allele cell contains a gcode
 comp = __1__

	100025
	Allele cell skipped, since multi-allele cell contains an NMDP code
 cell = __1__

 cell type = __2__

 main comp = __3__

C.2
Tools Errors
Tools errors are always fatal except for file writing errors which are only registered—200006 & 200007. Table C.2, “Tools Error Messages” provides the specific error messages.

Table C.2, Tools Error Messages
	Message Number
	Error Message

	200001
	HLA File Type unknown

 hlaFileType = __1__

	200002
	Cannot evaluate string
 eval_status = __1__

 eval_str = __2__

	200003
	HLA Object Type unknown

 objectType = __1__

	200004
	Unknown file type (not tab-separated, '.txt' or '.csv',
nor Excel spreadsheet,'.xls')

 file = __1__

C.3
HLA File Errors
HLA File errors are always fatal. Table C.3, “HLA Error Messages” provides the specific error messages

Table C.3, HLA File Error Messages
	Message Number
	Error Message

	300001
	HLA Locus Name is not defined for taxon

 locus_name = __1__

 taxon_id = __2__

	300002
	File type incorrect or did not find locus names

 file type = __1__

 file type checked = __2__

 header val = __3__

 header val checked = __4__

	300003
	Filename is not tab-separated (ie, suffix '.txt')

 source = __1__

 file = __2__

	300004
	Error opening tab-separated file to write data

 source = __1__

 file = __2__

	300005
	Unknown file type

 file type = __1__

	500006
	Cell containing multiple alleles contains more than one gcode and/or cwd allele

 alleles = __1__

 cell returned = __2__

 gcodes = __3__

 cwdalleles = __4__

 rare alleles = __5__

C.4
Pypop Errors
The pypop error messages are specified in Table C.4, “Pypop Error Messages”. These errors are not immediately fatal since they are registered (written to the log-file and counted). Anyone of these error messages will cause the runPypop.pl script to ultimately fail at the end of the processing step.

Table C.4, Pypop Error Messages
	Message Number
	Error Message

	400001
	Error opening pypop config file

 pypopy file = __1__

 config file = __2__

	400002
	Pypop config category missing

 category = __1__

	400003
	Pypop property is not defined correctly the properties

 property = __1__

	400004
	pypopCategories is not a non-empty Perl referenced array

 property = __1__

 value = __2__

	400005
	Header row has not been set

C.5
Allele Disambiguator Errors
The Allele Disambiguator error messages are specified in Table C.5, “Allele Disambiguator Error Messages”. These errors are not immediately fatal since they are registered (written to the log-file and counted). Anyone of these error messages will cause the disambiguateAlleleNames.pl script to ultimately fail at the end of the processing step. Error messages 500001 .. 500005 will not occur when disambiguateAlleleNames.pl is run as part of the validation pipeline. However, they may occur if the script is run independently.

Table C.5, Allele Disambiguator Error Messages
	Message Number
	Error Message

	500001
	Gcode is not in recognized list of gcodes
 gcode = __1__

	500002
	NMDP code is not in the recognized list of NMDP codes
 nmdp code = __1__

	500003
	Cell containing multiple alleles contains serological code

 sero code = __1__

	500004
	Cell containing multiple alleles contains an NMDP code

 nmdp code = __1__

	500005
	Cell containing multiple alleles contains a gcode

 gcode = __1__

C.6
Allele Errors
The Allele error messages are specified in Table C.6, “Allele Error Messages”. These errors are not immediately fatal since they are registered (written to the log-file and counted). Anyone of these error messages will cause the either validateAlleles.pl or disambiguateAlleleNames.pl script to ultimately fail at the end of the processing step.

Table C.6, Allele Error Messages
	Message Number
	Error Message

	600001
	Validated file is not tab-separated (.txt)

 file = __1__

	600002
	Allele cell component does not conform expected syntax

 locus_name = __1__

 cell comp = __2__

	600003
	Allele cell component does not have an expected type

 locus_name = __1__

 cell comp = __2__

	600004
	Allele cell component does not conform to expected length

 locus_name = __1__

 cell comp = __2__

 digit length = __3__

	600005
	Allele cell skipped, since cell has syntax errors

 cell = __1__

 cell type = __2__

C.7
Pre-Process Errors
The Pre-Process error messages are specified in Table C.7, “Pre-Process Error Messages”. These errors are not immediately fatal since they are registered (written to the log-file and counted). Anyone of these error messages will cause the preProcessAlleleNames.pl script to ultimately fail at the end of the processing step.

Table C.7, Pre-Process Error Messages
	Message Number
	Error Message

	700001
	Preprocessed file is not tab-separated (.txt)

 file = __1__

C.8
HLA File Converter Errors
The HLA File Converter error messages are specified in Table C.8, “HLA File Converter Error Messages”. These errors are not immediately fatal since they are registered (written to the log-file and counted). Anyone of these error messages will cause the preProcessAlleleNames.pl or runPypop.pl script to ultimately fail at the end of the processing step.

Table C.8, HLA File Converter Error Messages
	Message Number
	Error Message

	800001
	The source hla reader not of the correct class type (qualityControl::HlaFile)

 source reader type = __1__

	800002
	Destination hla file type is neither HLA Typing Template

nor Pypop

 dest_type = __1__

	800003
	Filename is not tab-separated (ie, suffix '.txt')

 source = __1__

 file = __2__

	800004
	Error opening tab-separated file to write data

 source = __1__

 file = __2__

	800005
	Column Pair Does not have the same locus

 col_1 = __1__

 locus_1 = __2__

 col_2 = __3__

 locus_2 = __4__

	800001
	The source hla reader not of the correct class type (qualityControl::HlaFile)

 source reader type = __1__

	800002
	Destination hla file type is neither HLA Typing Template

nor Pypop

 dest_type = __1__

	800003
	Filename is not tab-separated (ie, suffix '.txt')

 source = __1__

 file = __2__

	800004
	Error opening tab-separated file to write data

 source = __1__

 file = __2__

	800005
	Column Pair Does not have the same locus

 col_1 = __1__

 locus_1 = __2__

 col_2 = __3__

 locus_2 = __4__

	800001
	The source hla reader not of the correct class type (qualityControl::HlaFile)

 source reader type = __1__

	800002
	Destination hla file type is neither HLA Typing Template

nor Pypop

 dest_type = __1__

C.9
Lookup Table Manager Errors
The Lookup Table Manager errors are specified in Table C.9, “Lookup Table Manager Error Messages”. These errors are not immediately fatal since they are registered (written to the log-file and counted). Anyone of these error messages will cause the prevalidateAlleleNames.pl or disambiguateAlleleNames.pl script to ultimately fail at the end of the processing step.

Table C.9, Lookup Table Manager Error Messages
	Message Number
	Error Message

	900001
	Cannot instantiate lookup table object

 eval_status = __1__

 eval_str = __2__

APPENDIX D Four Digit Ambiguity Resolution

The four digit ambiguity resolution is an alternate ambiguity resolution algorithm that considers only the first four (4) digits of an allele name. The definition of terms, the assumed conditions, and the attributes (see Table 5, “Attributes Defined for Each Name Ni”) are specified in Section 4. The processing cases considered are specified in Table 6, “Processing Cases”. The processing cases are specified below.
(==1) Processing Case:
The decision tree is defined in the table D.1, “(==1) Decision Tree”, below. The Condition and Sub-Condition are considered in priority order. That is only one condition and optionally one subsequent Sub-Condition is executed for each N1
Table D.1, (==1) Decision Tree

	Condition
	Sub-Condition
	Result

	N1.type in {'sero', 'gcode'}
	
	return N1.dallele

	N1.type == 'allele'
	N1.gcode defined
	return N1.gcode

	
	N1.gcode not defined
	Determine gcode using N1.dallele; if gcode exists return it, otherwise return N1.dallele

(>1) Processing Case:

This processing case is defined by two steps, the binning process, and result determination process. Recall that in this case all names Ni is type allele.

1. Binning Process

In this step, the names Ni are binned into the following lists defined in the Table 8, “Binning Lists”. For each name Ni in the names list, the decision tree specified in the following Table D.3, “(>1) Decision Tree”, defines how Ni is binned. The Condition, Sub-Condition1, and Sub-Condition2 are considered in priority order.
Table D.3, (>1) Decision Tree

	Condition
	Sub-Condition1
	Result

	Ni gcode is defined
	
	bin Ni.gcode into gcodes

	Ni gcode is not defined;
Determine gcode using Ni.dallele
	Determined gcode is defined
	bin determined gcode into gcodes

	
	Determined gcode not defined
and
Ni.cwd is TRUE
	bin Ni.dallele into cwds

	
	Determined gcode not defined
and
Ni.cwd is FALSE
	bin Ni.dallele into rares

2. Result Determination Process

The decision tree for determining the resulting cell is defined in the following Table 10, “Cell Results”.

Ambiguity

Resolution

Validation

Preprocess

Run Pypop

�Pypop File

HLA Typing�Result

Standard File

Validated File

Ambiguity

Resolved File

Pypop Results

Properties

MHC

Database

MHC

Database

ANT

IMGT

Controlled

Vocabularies

NMDP

Codes

CWD Alleles

And gcodes

ANT Changed

Names

ANT Deleted

Names

ANT Ambiguous

Typing Data

[image: image4.png][image: image5.png]