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Abbreviations 
BMDRs—Bone Marrow Donor Registries;  
CDV—constrained disequilibrium values;  
Dij—pairwise LD statistic between alleles Ai and Bj at two loci, also written as DAiBj;  
D'ij  (=Dij /Dmax)—the standard normalized linkage disequilibrium between alleles Ai and Bj at 

two loci;  
DPA—disequilibrium pattern analysis;  
EM—expectation-maximization;  
F—the expected proportion of homozygotes under HWP: FA = Σi pAi

2; 
FND—the normalized deviate of the homozygosity F statistic;  
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H (= 1—F)— the expected proportion of heterozygotes under HWP, also referred to as the gene 
diversity index;  

HF—haplotype frequency;  
HLA—human leukocyte antigen;  
HSF—haplotype specific homozygosity;  
HSH—haplotype specific heterozygosity;  
HWP—Hardy-Weinberg proportions;  
IHW—International Histocompatibility Workshop;  
kA—the observed number of genetic variants, e.g., alleles or amino acids at locus A;  
KIR—killer inhibitory receptors;  
LD—linkage disequilibrium;  
LE—linkage equilibrium;  
n—# of individuals in a sample;  
NK—Natural Killer 
PyPop— www.pypop.org, www.ImmPort.org (Python for Population Genomics – PyPop, current 

release version 0.7.0) (Lancaster et al. 2003, 2007a, 2007b, 2008; Lancaster 2006); 
r—the correlation coefficient between the allele frequency distributions at two bi-allelic loci 

denoted A and B, with r2 = D2/[pA1pA2pB1pB2]; 
SIRE—self identified race/ethnicity 
Wn— also denoted WAB, the multi-allelic extension of the bi-allelic correlation coefficient r of LD 

between two loci denoted A and B: Wn = r for bi-allelic loci 
 
I. Overview  
 

A. Introduction 
Note that references in Section I are kept to a minimum. Detailed references are listed in later 
sections. 
 There are many challenges in trying to identify appropriate techniques for analysis of the 
extensive data generated by whole genome association and/or linkage studies as well as detailed 
study of specific genetic regions such as HLA and KIR. Even when computational power is 
sufficient to consider all possible combinations of genes/alleles/haplotypes, the combinatorial 
magnitude makes interpretation of the results problematic. Some single nucleotide polymorphisms 
(SNPs) or microsatellites (MSATs) that do not show a single locus association with disease 
(marginal effect), may nevertheless be directly involved in disease predisposition, and this may 
only be detected via appropriate haplotype or stratification analyses that take account of the 
linkage disequilibrium (LD) structure of the data. Conditional analyses of haplotype data are 
important for identifying primary disease predisposing genes, as well as additional (secondary) 
genes that are also involved in disease, but whose effects are weaker and may be restricted to 
specific allele/haplotype/genotype subsets at the primary gene.  
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 With HLA disease associations, the high level of LD between many of the classical HLA 
genes means that multiple disease associations may be observed, some of which may indicate a 
causative genetic factor and others may be due to LD with this causative factor. This is illustrated 
by the original associations of the serologically defined A3, B7, and DR2 alleles with multiple 
sclerosis in samples of European origin, and using molecular results the association of the 
haplotype DRB1*15:01 DQA1*01:02 DQB1*06:02 (the serological designation DR2 was later 
split into DR15 and DR16) as the primary association in Europeans. LD is in many cases nearly 
complete between the tightly linked class II DRB1, DQA1, and DQB1 loci. For example, almost 
all DR3 haplotypes in many ethnic groups are DRB1*03:01-DQA1*05:01-DQB1*02:01. The class 
I B and C loci also exhibit very high LD, as do DPA1-DPB1, and the DRB3/4/5 loci and DRB1, 
while less closely linked HLA loci show more moderate, but still quite strong, levels of LD (e.g., 
class I A and B). Structural variation and recombination hotspots within the HLA region have been 
identified, particularly between the DP and DR-DQ regions, and explain the lower LD generally 
seen between the DP loci and the other classical HLA loci. 
 Reports of disease associations for MSATs and SNPs in the HLA region have appeared in 
the literature for a number of diseases for which classical HLA genes have been identified as a 
primary disease risk factor. In many of these studies it has been difficult to determine if an 
additional HLA region gene is involved in disease, versus the associations reported reflecting LD 
with the antigen presenting HLA molecules directly involved in disease. A number of analytic 
strategies have been developed to remove the effects of LD with the antigen presenting HLA genes 
directly involved in the disease (reviewed in Thomson et al. 2008, also see Thomson et al. 2007a, 
and references therein).  
 The frequency of haplotypes and the strength of LD among loci are also informative with 
respect to evolutionary forces acting on genes, and the history of human populations. An 
understanding of LD patterns is also useful for detecting evidence of selection.  Distinguishing 
among demographic and selective explanations for patterns of variation observed with HLA genes 
is a challenge (Meyer and Thomson 2001, Meyer et al. 2006, 2007, Single et al. 2007a). Allele 
frequency distributions for the HLA loci, with the exception of DPB1, deviate from neutral 
expectations in the direction of balancing selection (for a meta-analysis and review of previous 
studies see Solberg et al. 2008), and this is unlikely to be explained by demographic factors. The 
fact that DPB1 allele distributions do not deviate from neutral expectations does not mean 
selection is not acting; it is detected at the amino acid level for DPB1 as well as for the other 
classical HLA genes (Salamon et al. 1999, Valdes et al. 1999, Cano and Fernández-Viña 2009). 
Other features of HLA variation are explained in part by demographic history, including decreased 
heterozygosity and increased LD for populations at greater distances from Africa. Examining all 
locus pairs of the classical HLA genes, LD is seen to be lowest in sub-Saharan African 
populations, and highest in the native populations of North and South America (Single et al. 
2007a,). HLA allele and haplotype frequencies (HFs) vary even within Caucasians, for example 
from Northern to Southern Europe (Single et al. 2007a, Meyer et al. 2007), and this must be taken 
into account in disease studies, and also with analyses of SNP and MSAT data. Combinations of 
these clines in frequency and LD create a complex setting for analyses involving individuals of 
mixed ancestry (e.g., African-, European-, Hispanic-, and Asian- Americans, see Maiers et al 
2007). The percentage of ancestry from heterogeneous regions must be taken into account in 
disease studies in order to avoid spurious association signals.  
 Understanding and incorporating the LD structure of a genetic region into analyses is 
crucial for detecting disease predisposing variants, as well as for understanding the evolutionary 
history of a genetic region. Our knowledge in this area, both within and between populations, is 
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continuing to evolve with greater availability of molecular-level HLA data as well as typing of 
many additional marker loci (MSATS and SNPs).  
 

B. Linkage disequilibrium (LD) 
As stated by Slatkin (2008) “Linkage disequilibrium is one of those unfortunate terms that does 
not reveal its meaning.” Non-random associations found between alleles at different loci are 
generally referred to as linkage disequilibrium (LD) although they may not be due to linkage. 
Under some selection models, a population at equilibrium can maintain LD between loci, and 
although rare, unlinked markers may show significant LD; also very closely linked loci may be in 
linkage equilibrium. Gametic disequilibrium is a more descriptive term, but is not as commonly 
used. 
 The LD parameter Dij (also written as DAiBj) between a pair of alleles Ai and Bj at two loci 
is defined as the difference between the observed haplotype (gametic) frequency at the population 
level and that expected under random association of the two alleles, i.e., Dij = f(AiBj) - pAi pBj. 
However, the maximum value Dij can take is a function of the observed allele frequencies and 
defining the strength of any observed non-random association is complicated by this fact. A 
number of normalized measures to reflect the strength of LD have been proposed; both for bi- and 
multi-allelic data (see Hedrick 1987 for review). No single summary statistic measuring LD 
strength captures all aspects of LD, which is multi-dimensional in nature. Thus, each measure has 
different properties and hence different strengths and weaknesses with respect to the question 
being addressed (Lewontin 1988). Existing measures are not always well suited for direct use with 
all data. 
 LD can be created by various evolutionary factors: selection either directly on the two loci 
or indirectly via a hitchhiking event, migration and admixture, inbreeding and genetic drift. The 
most likely cause though is historical—when a new mutation arises there is a non-random 
association created with respect to variation at other polymorphic loci—this association is broken 
down by recombination, but remains for a very long time between closely linked loci.  
 The observed levels of overall LD for HLA data have been shown to be incompatible with 
neutrality expectations (Hedrick and Thomson 1986, Klitz and Thomson 1987, Klitz et al. 1992). 
Two methods to specifically detect selection via LD patterns of HLA genes have been developed 
and have identified specific HLA haplotypes that show signs of past selection in specific 
populations: disequilibrium pattern analysis (DPA) (Thomson and Klitz 1987, Klitz and Thomson 
1987, Williams et al. 2004) and constrained disequilibrium values (CDV) (Robinson et al. 1991a, 
b, Grote et al. 1998). There is agreement between the results of application of these two methods, 
however, there are many instances where selection will not be detected via these methods. 
 The two most common measures of the strength of LD for bi-allelic data are: (1) the 
normalized measure of the LD, namely D' = D/Dmax (for bi-allelic loci there is only one LD 
parameter, denoted D, since DA1B1 = -DA1B2 = -DA2B1 = DA2B2, and hence DAiBj = D, and Dmax is the 
maximum value D can take given the allele frequencies and the sign of D); and (2) the correlation 
coefficient r, which is most often reported as r2 = D2/[pA1pA2pB1pB2]. D' = 1 whenever one (or two) 
of the possible four haplotypes is not observed, irrespective of its expected frequency. In contrast, 
r = 1 only when the two loci show 100% correlation, i.e., when both loci have (a) equal allele 
frequencies, and (b) only two complementary haplotypes are observed: either A1B1 and A2B2, or 
A1B2 and A2B1. This correlation property is of particular interest to many research issues, e.g., if r 
= 1, or is very close to 1, then there is no, or probably insufficient, variation that can be analyzed 
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by any stratification method to distinguish between two potentially disease predisposing genetic 
variants. Similarly, in population genetic or evolutionary studies, the two loci (genes or amino 
acids thereof) would show very similar allele frequency distributions and it would be difficult to 
disentangle evolutionary forces acting on them. For multi-allelic markers appropriate extensions of 
these two bi-allelic measures are used. These are defined in section II.B.  

To distinguish between the effects of two markers which are highly correlated there must 
be some breakdown in the LD pattern so that stratification analyses can be applied. If the markers 
are truly 100% correlated, or so strongly correlated that their effects cannot be disentangled, then 
of course their individual effects cannot be distinguished, e.g., DRB1*15:01 and DQB1*06:02 and 
multiple sclerosis and narcolepsy in Caucasians. However, note that markers with D' = 1, can 
nevertheless often allow a heterogeneity test. For example, with two locus HFs of A1B1 = 0.3, A1B2 
= 0.2, A2B2 = 0.5, although D' = 1, r = 0.65 and one can possibly distinguish between the effects of 
A1 and A2 on B2 haplotypes, although not on A1 haplotypes, and similarly for the vice versa 
situation. For this reason we prefer the use of the correlation coefficient r for bi-allelic loci, and its 
extension for multi-allelic loci. With complete correlation of sites, e.g., when A1B1 and A2B2 are 
the only two haplotypes seen, or haplotypes which break up this association are too rare for use in 
stratification analyses, then the individual effects of the two loci cannot be disentangled (as 
mentioned in the Introduction above). Also to remember is that markers in different haplotype 
block structures can still show high LD with each other. Stratification analyses should not be 
restricted to within block analyses.   
 We have recently developed a complementary pair of asymmetric measures of the strength 
of pairwise LD for multi-allelic data: these are called conditional linkage disequilibrium (CLD) 
measures. These more accurately reflect the independence or lack of independence for genetic 
variation at two loci than do standard LD measures. For the bi-allelic case they are symmetric and 
equivalent to the correlation coefficient r (most often reported as r2 as described above). These 
new CLD measures are particularly relevant to disease association studies: to more accurately 
determine when stratification analyses can be applied to detect primary (major) disease 
predisposing genes, as well as to identify additional disease genes in a genetic region. They are 
also applicable to the study of evolutionary forces such as selection acting on individual amino 
acids of specific genes, or other loci in high LD. The measures can be applied to variation at any 
pair of loci (HLA and other genes, SNP data, MSAT data, and haplotypes thereof, as well as 
biologically relevant sequence features (SFs) (Karp et al. 2010) based on structural and functional 
features of a protein). With SNPs it is recommended for analysis of haplotype block data, both for 
block-block comparisons of LD patterns, and for block to HLA (or other primary disease locus) 
data. A manuscript on this work is in preparation, and more details will be given in a later version 
of this Methods Manual.  
 No LD measure completely captures all pertinent features of the data. Thus, we always 
recommend consideration of other complementary summary measures of the strength and structure 
of LD in multi-allelic data.  
 

C. Estimating HLA and KIR haplotype frequencies (HFs) 
Many software programs can handle large numbers of bi-allelic markers e.g., haploview 
(http://www.broad.mit.edu/mpg/haploview/index.php). However, most of these do not work with 
the high degree of polymorphism found in for example the classical HLA genes or MSAT loci. For 
example, with HLA data in Caucasians it is not uncommon to see 40 to 50 alleles at with DRB1,  
15 or more alleles at DQB1 , and 50-80 DRB1-DQB1 haplotypes.. For more details on numbers of 
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alleles seen in specific populations and regions world wide see Solberg et al. (2008). Other 
programs only allow a limited number of loci to be evaluated, not the hundreds to thousands that 
are the focus of current projects. These limitations apply to estimates of HFs for both family based 
and case/control data. Also, issues of missing data vary between programs, as well as how 
haplotypes are estimated with family data (see Niu 2004 and Salem et al. 2005 for reviews). 
Various mathematical frameworks have been proposed and implemented to address haplotype 
estimation: Parsimonious methods such as Clark’s algorithm, Maximum likelihood methods using 
the expectation maximization (EM) algorithm, Pseudo-Bayesian and Bayesian methods (Niu et al. 
2002, Niu 2004).  
 Maximum likelihood based algorithms to specifically handle the high level of 
polymorphism of the HLA loci (or MSATs) have been developed (these are applicable to less 
polymorphic loci as well): the haplotype and LD estimation module in PyPop (www.pypop.org, 
www.ImmPort.org) was developed specifically for analysis of the 13th International 
Histocompatibility Workshop (IHW) anthropology/ human diversity and disease association data 
(Lancaster et al. 2003, 2007a, b, 2008, Lancaster 2006, Single et al. 2007a, b, Meyer et al. 2007). It 
has also been applied to data analyses for the 14th and 15th IHWs (Single et al. 2007d) as well as 
other population studies. Precompiled versions using the default settings are limited to a total of 8 
loci at a time and 5,000 individuals; however, these values can be increased by modifying the 
source code, which is freely available.  
 The haplotype frequency and LD estimates of Bone Marrow Donor Registries (BMDRs) 
(e.g., NMDP in the US, Anthony Nolan Research Institute in the UK, EUROMADO in Europe, 
Registre France Greffe de Moelle in France, ZKRD in Germany, and JMDP in Japan) include 
multi-locus genotypes for millions of individuals. To accomplish these analyses, registries have 
customized the PyPop software to run on their high-memory servers. Algorithms to handle more 
loci in the HLA region, as well as large sample sizes, have been developed e.g., the Estihaplo 
algorithm of Gourraud et al. (2007) (http://birl.supbiotech.fr/hla-estihaplo.html) (also see Salem et 
al. 2005). These  methods, which are unconstrained by sample size and number of alleles, are only 
limited by the number of haplotype parameters they will exhaustively enumerate (hundreds of 
thousands of haplotypes can be formed by the classical HLA genes). 

HLA data present additional issues since  typing techniques may not completely identify all 
possible HLA alleles. Consequently haplotype estimation models and software have to adapt to an 
additional level of missing information (in addition to missing phase information) which is the 
ambiguous nature of the typing. This issue has been part of working with HLA data for a long 
time, as exemplified by the coexistence of broad and split HLA serological nomenclature (e.g., 
HLA-DR2 which was split into DR15 and DR16). The complexity of this issue is even greater 
with molecular typing techniques, as reflected by the NMDP code system 
(http://bioinformatics.nmdp.org/HLA/Allele_Codes/Allele_Code_Lists/index.html). Bone Marrow 
Donor registries have developed software that can  account for missing typing and HLA typing 
ambiguities, but aspects of BMD registry nomenclature (e.g., NMDP codes) can make these less 
user friendly options for some users. 

Most analysis tools require two unambiguous allele assignments per locus, per individual 
as input. While “high resolution” typing systems may generate data with fewer ambiguities, both 
allele and genotype ambiguities still occur. Allele ambiguity results when polymorphisms that 
distinguish alleles fall outside of assessed regions, while genotype ambiguity results from an 
inability to establish phase between identified polymorphisms. Although both types of ambiguity 
can occur in all typing systems (including sequence based typing (SBT) methods), “high 
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resolution” typing systems generate less ambiguous HLA data, and it is anticipated that new 
generation deep sequencing may give unambiguous data. There are currently no universal 
standards for making these allelic assignments; they are based on the individual investigators 
accumulated and empirical knowledge of the data under study, LD patterns, etc. Thus, allele 
assignments for the same specimen may vary between laboratories. We have developed ambiguity 
reduction rules based on “common and well documented” (CWD) alleles (Cano et al. 2007) (see 
HLA Guidelines (“Standard Operating Procedure for HLA Quality Control (QC) Pipeline” 
https://www.immport.org). In collaboration with the NCBI, we have developed an algorithm 
(currently in beta testing) for ambiguity reduction which extends the use of CWD information to 
also include population/regional allele frequency data (Single RM, Mack SJ, Dunivin R, Feolo M, 
in progress). 
 Modules for data validation and binning of alleles that are indistinguishable under certain 
circumstances (typing methods and/or time frames) are available in PyPop; the latter is usually 
necessary for performing meta-analyses of data. Additional modules in PyPop can be used for data 
quality control (QC) including: validation of allele names, testing of Hardy Weinberg proportions 
in controls (significant deviations may indicate errors in allele calls), and similarly with multilocus 
haplotype patterns (previously unobserved HLA B-C, DR-DQ and DPA-DPB haplotypes may flag 
errors). The Immunogenomic Data-Analysis Working Group (IDAWG) (www.igdawg.org) is an 
International Consortium of HLA and KIR researchers co-chaired by Steven J Mack and Jill A 
Hollenbach, with the aims to develop solutions and recommend community standards for the 
management and analysis of immunogenomic data. The IDAWG has partnered with the NIAID 
Bioinformatics Integration Support Contract (BISC) to develop the “Silver Standard” data 
recording and data validation pipeline for HLA genotype data collection (www.immport.org). This 
includes, in addition to data validation and binning, specific rules for the reporting and recording 
of HLA data in such a way that they will have optimal utility through time, and across studies, and 
for other researchers, in compliance with standards emerging from the HLA community regarding 
the reporting of HLA data (e.g., Helmberg 2000). More recently the IDAWG has developed 
nomenclature standardization modules and an alpha version of an HLA ambiguity reduction 
module. 
 KIR data present additional analytical issues that need to be dealt with, including that some 
loci are not found in all individuals. That is, there is presence/absence polymorphism in addition to 
allele level polymorphism. Although allele level KIR data has been less frequently reported, it is 
now being typed for more often. Customized algorithms, described in section IV.B, have been 
developed (e.g., Yoo et al 2007 - HAPLO-IHP, Gourraud et al 2007 - Estihaplo, Nowak et al 2008 
– NullHap, Erdem et al 2009 - HAPLO-ASP ). Both for HLA and KIR a central issue is whether 
prior restriction of the possible haplotype space should be used. For maximum likelihood models, 
any constraints will  affect estimates derived from maximum likelihood based procedures. One 
approach for avoiding the potential removal of haplotypes of interest based on these constraints is 
to perform a two-stage estimation as follows. The first step is to determine a preliminary set of 
haplotypes and frequencies based on unconstrained estimation. This is followed by a constrained 
estimation where the haplotype space is based on a biologically meaningful reduction of the set of 
possible haplotypes. parameter space.  
 Haplotype estimation with the cases (patients) in case/control data is problematic for diseases 
that do not show a mode of inheritance close to recessive (allowing for incomplete penetrance) as 
associated marker genes may then deviate significantly from Hardy Weinberg proportions (HWP) 
(Thomson 1993, 1995a, b). HWP are assumed in application of the EM algorithm that is the basis 
for many haplotype estimation algorithms. The haplotype estimates may be most problematic for 
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diseases with a dominant or additive mode of inheritance (allowing for incomplete penetrance) and 
a strong disease association. 

Further, it is important to keep in mind that most analyses that use haplotype frequency 
data as input only take into consideration sampling variability and do not account for potential 
biases in the estimation of the haplotypes. Analyses are conducted assuming that HFs are known 
and not estimated. While resampling techniques can address aspects of this issue, they are not 
standard and not fully adapted to this problem.  
  
II. Linkage disequilibrium (LD) 
 

A. Causes of linkage disequilibrium 
The original models of population genetics dealt chiefly with single loci, so that the genome was 
regarded as a collection of individual independent loci each undergoing its separate evolution. 
Until recently, most observed polymorphic genetic data were for loci sufficiently far apart on the 
genetic map that this assumption of independence was reasonable. Theoretical and simulation 
studies of selection and two and three locus systems demonstrated that LD of alleles could be 
maintained in a stable polymorphism (see Thomson 1977 for references). Simulations of multi-
locus systems involving more loci and simple selection schemes were made (Lewontin 1964a, b, 
Franklin and Lewontin 1970) and it was thought that LD might be quite ubiquitous across the 
genome.  
 The hitchhiking effects produced on the allele frequencies and LD of linked neutral loci as 
a selected locus evolves towards its equilibrium value were also studied at this time (Smith and 
Haigh 1974, Thomson 1977, as well as later studies (Stephan et al. 2006). As an approximate 
generality, significant effects on the neutral locus were seen if the recombination fraction between 
the neutral and selected loci is smaller than the order of magnitude of the selected differences at 
the selected locus (Thomson 1977). Further, significant LD could be generated between neutral 
loci that initially showed no LD. 

In a simulation study of LD in humans, Kruglyak (1999) (also see Slatkin 2008) predicted 
that little LD would be seen beyond 3kb. Apart from the HLA community, the subsequent 
description of LD using a block like structure of human variation (Daly et al. 2001, Jeffreys et al. 
2001, Gabriel et al. 2002, Wall and Pritchard 2003) was somewhat of a surprise. In the 1970’s 
non-random association of alleles at the HLA system were well established at the population level, 
and in fact this LD led to the recognition that multiple loci were involved for class I. The HLA-A 
and –B loci were shown to display a high level of LD given that they are about 1cm apart. Several 
authors have found significant LD across large distances in the HLA region (Begovich et al. 1992, 
Gordon et al. 2000, Sanchez-Mazas et al. 2000).  
 Theoretical studies previously established that LD can be created by various evolutionary 
factors: as well as selection (including disease) either directly on the two loci or indirectly via a 
hitchhiking event as detailed above, migration and admixture, inbreeding and genetic drift can 
create significant LD. The most likely cause, though, is historical — when a new mutation arises 
there is a non-random association created with respect to variation at other polymorphic loci — for 
neutral loci, this association is broken down by recombination at a rate of (1 – θ) per generation 
where θ is the recombination fraction between the two loci. Thus, the linkage disequilibrium in 
this case converges to zero (random association of alleles) with time as (1 - θ)t, where t is the 
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number of generations. The more loosely linked two loci are, the faster the decay of LD. However, 
for very tightly linked loci LD may exist for a very long time. 
 For monogenic traits, most disease genes mapped to date show LD with markers 
sufficiently close to the disease gene, 0.5cM or even more distant in some cases, e.g., cystic 
fibrosis, Huntington disease, myotonic dystrophy, hemochromatosis, adult onset polycystic kidney 
disease, and many others. The familial breast cancer gene BRCA1 is an exception to this rule; LD 
is not seen with closely linked markers since, except in the Ashkenazi Jewish population, each 
family showing linkage to this gene often has a unique mutation. For disease association studies in 
general, it is important to use a combination of methods, including stratification analyses to take 
account of the LD structure of the data. This is particularly true for diseases with an 
immunogenetic component where the loci to account for have often been the antigen presenting 
classical HLA genes. Additional detail is given in section III.  
 

B. Measures of the strength and significance of linkage disequilibrium  
 

(i) Two locus theory 
Deviation from random association of alleles Ai and Bj at two loci is most often measured using the 
coefficient of LD, DAiBj = Dij = f(AiBj) - pAi pBj (as indicated in Section I), and we now simplify the 
notation to be Dij = fij - piqj. Lewontin (1964a) developed a normalized measure, D'ij = Dij/Dmax, to 
address the fact that the range for Dij is not independent of allele frequencies. Values for D'ij range 
from –1 to 1. 
 There are several statistics that can be used to measure overall LD between the set of 
alleles at two different loci. Hedrick’s (1987) D' statistic sums the contributions of all individual 
haplotypes (D'ij ) in a multi-allelic two-locus system, using the products of allele frequencies at the 
loci, pi and qj, as weights, with I and J representing the number of alleles at the A and B loci, 
respectively. 
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values. The Wn statistic can be written as a re-expression of the overall Chi-square statistic, X2

LD, 
normalized to be between zero and one.  
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When there are only two alleles per locus, Wn is equivalent to the correlation coefficient between 
the two loci (see Section I), defined as 11 1 2 1 2/r D p p q q=   

 
 Both D' and r have been used in definitions of haplotype blocks for bi-allelic markers. 
Studies by Single et al. (2007a, b) using highly polymorphic HLA data have shown that the multi-
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allelic D' statistic is more strongly influenced by the number and total frequency of singleton 
haplotypes. For this reason Wn is considered a better measure of overall LD for highly 
polymorphic loci, although as stated above this and all other measures have considerable 
limitations. 
 A third measure of overall LD is a standardized version of the likelihood-ratio statistic used 
in a permutation test of the significance of overall LD between two loci (Zhao et al. 1999). It is 
defined in the section below on significance testing.   
 A fourth measure of LD is the number of haplotypes observed relative to the number 
expected under linkage equilibrium (LE), given the sample size and the number of alleles at the 
constituent loci for the haplotype. This statistic, defined below, is a modification (Mateu et al. 
2001) of one minus the fraction of extra haplotypes statistic described by Slatkin (2000).  

 
min

min min

1 obs LE obs

LE LE

k k k kFNF
k k k k

− −
= − = ,

− −  
where kobs is the number of different haplotypes seen in the sample, kmin is the minimum number of 
possible haplotypes (kmin is the larger value of the number of alleles, k, for each of the individual 
loci in the haplotype), and kLE is the number of different haplotypes expected under LE:  kLE can be 
estimated by simulation conditioning on the sample size and allele frequencies at each locus as 
follows. For each observed sample of size N, 2N haplotypes are generated by sampling 
independently, with probabilities based on the allele frequencies for that population and LE, from 
the distribution of alleles at each locus. The number of distinct haplotypes is then counted in this 
sample simulated under LE. kLE is estimated as the average value over 10,000 replications. FNF 
takes a value of zero if the number of haplotypes observed is equal to the number expected under 
LE and one if the minimum number of haplotypes is observed in the sample.  
 
(ii) Significance testing 
The significance of overall LD can be tested using the  X2

LD statistic defined above in the equation 
for Wn. It has better statistical properties for less highly polymorphic loci. Instead, the significance 
of overall LD between two loci can be tested using the permutation distribution of the likelihood-
ratio statistic (Slatkin and Excoffier 1996) and is implemented in the PyPop program for 
population level data. The statistical significance of individual LD coefficients can be tested using 
X2

ij = (2N)D2
ij/pi(1-pi)qj(1-qj) (Weir 1996). 

 Likelihood ratio based tests relate the likelihood of the observed data, with no constraints, 
to the likelihood of the data under a null hypothesis of linkage equilibrium (LE). If L0 represents 
the likelihood of the data assuming LE (L0 is computed with HFs given as the product of allele 
frequencies), and L1 represents the likelihood of the data based on the estimated HFs without the 
assumption of LE, then the likelihood ratio statistic, S = 2log(L1/L0), has an asymptotic Chi-square 
distribution with (I-1)*(J-1) df. The Chi-square approximation for S can be poor for highly 
polymorphic loci. A better approximation for the distribution of S under the null hypothesis that 
there is no LD can be approximated using the following resampling procedure. First, phenotypes at 
each locus are permuted between individuals. Second, the likelihood of the data, L1, and a 
corresponding new value of S is computed for the “permuted sample” (L0 is not changed by the 
permutations). These two steps are repeated a large number of times (e.g., 1000 times) to give the 
permutation distribution of S. The p-value for the test of no LD (i.e., LE) is the proportion of 
“permuted samples” yielding a value of S at least as large as the value computed from the original 
non-permuted data.  
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 The third measure of overall LD mentioned in the above subsection is a standardized 
version of the likelihood-ratio statistic, S, based upon the permutation distribution (Zhao et al. 
1999). The standardized statistic is defined as ( ) (2 [ ]S Sdf N S )ξ μ σ= / − / , where μs and σs are the 

mean and standard deviation of the permutation distribution for S, respectively.  
 
(iii) Haplotype specific heterozygosity (HSH)  
Haplotype specific heterozygosity (HSH) was developed (Malkki et al. 2005 and Single et al 
2007c) to distinguish markers that act as proxies for classical HLA genes (low HSH) and markers 
that subdivide haplotypes at primary disease genes (high HSH) to detect additional genetic effects. 
HSH in these studies is the heterozygosity of a particular microsatellite (MSAT) marker given a 
specific HLA allele or haplotype. It is computed separately for each HLA haplotype by 
normalizing the MSAT allele frequencies found on the specific HLA haplotype and then 
calculating the heterozygosity using these normalized frequencies.  
 The normalized frequencies for the haplotype specific MSAT alleles are 

1

k
i i j jp h

=
= ∑ h and then 2

1
1 k

ii
HSH p

=
= − ∑ , where k is the number of MSAT alleles observed 

on the specific HLA-A-B-DRB1 haplotype and are the frequencies of the four-locus 
haplotypes (i.e., MSAT and HLA-A-B-DRB1). Markers with low HSH values can be used to 
predict specific HLA haplotypes or multi-locus genotypes to supplement the screening of HLA 
matched donors for transplantation. Markers with high HSH values will be most informative in 
studies investigating MHC-region disease susceptibility genes where HLA haplotypic effects are 
known to exist. 

1, ..., kh h

 Looking at five common Caucasian HLA-A-B-DRB1 haplotypes, each had at least one 
MSAT marker with an HSH value of zero, indicating that only one MSAT allele was observed for 
that particular HLA haplotype. In terms of the ability of MSATs to predict HLA-A-B-DRB1 
haplotypes, over 90% prediction probability was found for two of the common haplotypes using 
three MSATs. These preliminary data show the utility of this approach. 
 
(iv) Asymmetric measures of linkage disequilibrium 
Standard multi-allelic measures of LD are not fully informative for allele, haplotype, or amino acid 
level analyses of HLA data, where there is high polymorphism and often quite different numbers of 
“alleles” at the two loci being considered. The standard methods ignore possible differences in 
correlation patterns due to conditioning on one locus versus the other. Wn (= WAB), the multi-
allelic extension of the bi-allelic r LD correlation measure (i.e., square root of the r2 measure), is 
always symmetric with respect to two loci; however, the pattern of variation can be quite different 
between two loci, especially when they have different numbers of alleles. Asymmetric measures of 
LD are needed to better explore the relationship between highly correlated amino acid sites and 
measures of functional and selective importance.  
 We have recently developed a set of new asymmetric conditional LD (CLD) measures 
(denoted WA/B and WB/A) in order to dissect effects of correlated loci (e.g., amino acid sites within a 
gene, or combinations of genes in the KIR or HLA gene clusters), on measures of association and 
selection. These measures complement the HSH measure (Malkki et al. 2005, Single et al. 2007c) 
described above that was developed to assess how informative genetic markers are on different 
HLA haplotype backgrounds (e.g., MSATS, SNPs, and SNP blocks). With SNPs the asymmetric 
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measures are recommended for analysis of haplotype block data, both for block-block comparisons 
of LD patterns, and for block, or single SNP, to HLA (or other primary disease locus) data. For bi-
allelic loci, the two asymmetric measures coincide and equal the correlation measure r. 
 The new asymmetric LD measures are particularly relevant for sequence feature variant 
type (SFVT) analyses (Karp et al. 2010, Thomson et al. 2010) due to the large number of highly 
correlated SFs. We hypothesize that for polymorphic genes these asymmetric measures will be 
more powerful for identifying cases where conditional analyses can be applied to identify specific 
amino acids, and combinations of amino acids, directly involved in disease risk and for identifying 
additional disease genes in studies of allele and haplotype level variation.  
 
(v) Three locus theory 
We consider first the simplest case of three bi-allelic loci (loci A, B, and C, with alleles denoted 
A1, A2, B1, B2, and C1, C2). The eight haplotypes can be completely specified by seven parameters: 
three allele frequencies pA1, pB1, and pC1 (pA2 = 1 - pA1, and similarly for pB2 and pC2), three 
pairwise LD parameters denoted DAB, DAC, and DBC (with DAB = DA1B1 = -DA1B2 = -DA2B1 = DA2B2, 
as above, and similarly for DAC and DBC) and one three locus LD parameter denoted DABC (with 
DABC = DA1B1C1 = -DA1B1C2 = -DA1B2C1 = DA1B2C2 = -DA2B1C1 = DA2B1C2 = DA2B2C1 = -DA2B2C2). 
 
f(A1B1C1) = pA1 pB1 pC1 + pA1 DBC + pB1 DAC + pC1 DAB + DABC 
f(A1B1C2) = pA1 pB1 pC2 - pA1 DBC - pB1 DAC + pC2 DAB - DABC 
f(A1B2C1) = pA1 pB2 pC1 - pA1 DBC + pB2 DAC - pC1 DAB - DABC 
f(A1B2C2) = pA1 pB2 pC2 + pA1 DBC - pB2 DAC - pC2 DAB + DABC 
f(A2B1C1) = pA2 pB1 pC1 + pA2 DBC - pB1 DAC - pC1 DAB - DABC 
f(A2B1C2) = pA2 pB1 pC2 - pA2 DBC + pB1 DAC - pC2 DAB + DABC 
f(A2B2C1) = pA2 pB2 pC1 - pA2 DBC - pB2 DAC + pC1 DAB + DABC 
f(A2B2C2) = pA2 pB2 pC2 + pA2 DBC + pB2 DAC + pC2 DAB - DABC 
 
The general formulation is 
f(AiBjCk) = pAi pBj pCk + pAi DBjCk + pBj DAiCk + pCk DAiBj + DAiBjCk 
also see Bennett (1954), Geiringer (1994), Feldman et al. (1974), and for applications, see e.g., 
Thomson (1977) and Robinson et al. (1991, b). 
 

C. Linkage Disequilibrium and Natural Selection 
The disequilibrium pattern analysis (DPA) (Thomson and Klitz 1987, Klitz and Thomson 1987, 
Williams et al. 2004) and constrained disequilibrium values (CDV) (Robinson et al. 1991a, b, 
Grote et al. 1998) methods are two complementary approaches that have been used to detect 
selection acting on sets of HLA loci. Results from the two methods have identified specific HLA 
haplotypes that show signs of past selection in specific populations, e.g., in serological notation, 
the HLA haplotype A1 B8 DR3. 
 The DPA method identifies patterns of LD that are consistent with past selective events 
(Thomson and Klitz 1987, Klitz and Thomson 1987). For example, under selection in the recent 
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past on the HLA class I haplotype A1 B8 (either directly on one or both of these alleles or via a 
hitchhiking event), then related haplotypes, i.e., all the A1 non-B8's, and B8 non-A1's are 
predicted to have an expected value of LD proportional to the frequency of the unshared allele. 
Figure II.C.1, from Williams et al (2004), show examples from a Caucasian population where the 
pattern is indicative of selection. The allele in the figure title is the one that is conditioned on (e.g., 
for the figure on the left, A*01:01:01  (A*010101 in the Figure) is conditioned on with frequencies 
and LD values plotted for all the B alleles observed, and similarly in the second figure the 
conditioning is on B*08:01 with all DRB1 alleles.  
 
Figure II.C.1: Disequilibrium pattern analysis (DPA) for two of the pairwise combinations of 

the A:B:DRB1 loci.  

 
 The constrained disequilibrium values (CDV) method (Robinson et al. 1991a, 1991b, Grote 
et al. 1998) has been used to detect selection events in the HLA region by examining the pattern of 
pairwise LD values imposed by a three-locus system ( ) compared to those in the respective two 

locus system ( ). The difference between these two measures, 

''
ijD

'
ijD '

ij ijD DΔ = − '' , has a distribution 
which can be indicative of selection (as with DPA, not all cases of selection will be detected by 
this method). 
 The following criteria are used to infer selection based on Δ  values: 

1. If one of the three  values is positive (in practice greater than 0.1) and the remaining two 
are zero or negative, this is an indication of selection. 

Δ

2. If more than one of the  values is positive, but one is much larger than the rest (in practice 
more than double the next largest), this is an indication of selection. 

Δ

3. If all three  values are less than or equal to zero, or two are positive but close in value, no 
conclusion about selection can be drawn.  

Δ

It was previously thought that in cases 1 and 2, the constraining allele that gives the high positive 
 value is the one experiencing selection (Robinson et al. 1991a). Further studies have shown that 

this can be misleading, especially when the center locus of three is the one leading to a high 
positive Δ  value (Grote et al. 1998). 

Δ
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 There are many instances where selection will not be detected via either of these methods. 
However, there is agreement between the results of application of these two methods. 
 

III. Estimating HLA haplotype frequencies (HFs) 
 

A. Population data 
Estimated haplotypes and HFs play a central role in most genetic studies. Haplotype level analyses 
are important to studies of the etiology of human disease, selective forces acting on populations, 
and optimal sizes for BMDRs. Associations between markers and disease loci that are not evident 
with a single-marker locus may be identified in multi-locus marker analyses using estimated HFs. 
The term “haplotype” now includes any set of genetic polymorphisms (i.e., all DNA sequence 
variation including deletions) at contiguous loci. Except when recombination occurs, these 
neighboring genetic polymorphisms are co-transmitted by a single parental chromosome.  
 Haplotypes may be represented as blocks of DNA sequence variants like SNPs or groups of 
sequence variants can be abstracted into an allelic nomenclature at the level of a functional locus 
such as in the HLA system. For most studies, the type of experimental design and analysis is based 
on whether observed haplotypes will be determined by segregation analysis in families or 
estimation from phase-unknown unrelated individuals (Barnetche et al. 2005). Haplotypes are used 
for disease association mapping, QTL mapping, and imputing underlying genetic markers (Guan 
and Stephens 2008).   
 Early work on the estimation of HFs from unrelated genotype data were based on the EM 
algorithm with the assumption of HWP at the locus level (Dempster et al. 1977, Morton et al. 
1983, Ott 1977, Piazza 1975, Yasuda 1978). Later work refined, explored, and extended aspects of 
the algorithm (Fallin and Schork 2000, Hawley and Kidd 1995, Kirk and Cardon 2002, Long et al. 
1995, Single et al. 2002, Tishkoff et al. 2000). Application to haplotypes of SNPs (Niu et al. 2002, 
Qin et al. 2002, Stephens et al. 2001) and Bayesian methods (Niu 2004, Stephens and Donnelly 
2003) are commonly used. The algorithm used in Estihaplo (Gourraud et al. 2004) allows for 
multiple alleles at each locus and missing data. There are at least two implementations that extend 
Clayton’s SNHAP algorithm to work with multi-allelic data. SNPHAP uses a progressive insertion 
algorithm to trim improbable haplotype assignments and allows for missing data. The EM Zipper 
algorithm in Arlequin 3.5 (Excoffier and Lischer 2010) and the haplo.em routine in Haplo Stats 
(Schaid et al. 2002) iteratively insert increasingly larger sets of loci into the EM estimation and 
remove poorly supported haplotypes from the space of possible haplotypes based on posterior 
probabilities. When all loci are included at the first stage and the fraction of trimmed haplotypes is 
set to zero (both user-defined parameters) these reduce to the ordinary EM algorithm, enumerating 
all possible haplotypes for the observed set of unphased genotypes. 
 The performance of haplotype frequency estimation algorithms is sensitive to various 
aspects of the population under study (Niu 2004).  The accuracy of haplotype estimates is critical 
for association and candidate gene studies, and fine-mapping of disease genes. The presence or 
absence of specific low frequency alleles, and the corresponding estimated haplotypes that contain 
them, can influence the robustness of associations. In addition, available HF and LD estimation 
software are generally limited in their capacity to a few thousands of individuals; there is a need 
within the immunogenomic community for applications capable of handling very large (millions of 
individuals) data sets as well as very large numbers of alleles and haplotypes. 

   15 



 The diversity and complexity of Immunogenomic data poses additional challenges 
for haplotype estimation. Over the past thirty years, the Immunogenomic community has seen an 
exponential increase of the number of HLA alleles leading to regular nomenclature revisions. This 
phenomenon now also extends to the KIR genes (Robinson et al. 2006). In the HLA and KIR 
regions we have: heterogeneity of typing resolution, heterogeneity of typing techniques, 
heterogeneity of allele nomenclatures, continual discovery of new alleles; large numbers of alleles 
per locus observed; and high haplotype diversity. In addition, KIR and HLA data are very sensitive 
to ethnic background diversity.  The potential for population sub-structure is particularly relevant 
for immunogenomic data due to the fact that HLA and KIR genes carry both selective and 
demographic histories of populations under study (see e.g., Meyer et al. 2006, 2007, Solberg et al. 
2008 and references therein). These issues are exacerbated in BMDRs where sample sizes for 
specific research questions are often very large (> 100,000), as well as heterogeneity of typing 
levels and potential heterogeneity of ethnicities in a sample. Taken together, these features support 
the idea that the “HLA continues to provide new insights and remains in the vanguard of 
contemporary research in human genomics” (Vandiedonck and Knight 2009, p. 379). 
 For KIR and HLA, there is still much work to be done in order to understand haplotype 
estimation and potential biases. The frequency of the alleles, the sample size of the dataset, the fit 
or not of the single locus data to HWP, missing genotype information, and the variable levels of 
LD, all influence the accuracy of estimation. 
 

B. Disease studies 
While ABO blood group associations with disease were well known and replicated, the odds ratios 
(ORs) were all relatively small. Further, the biological mechanism of these disease associations 
was not known. In contrast, many striking HLA disease associations have been consistently found 
(some representative examples are given below in Table III.B.1 for serological data). The 
existence of LD has been a very powerful tool in mapping over 100 diseases (and possibly many 
more, the exact number is unknown) to the HLA region. An increased frequency of an HLA 
antigen (allele) in patients over that in an ethnically matched control population is inferred to be 
due either to the direct effect of the HLA antigen itself on disease, or to LD (association) of the 
HLA allele with the actual disease causing allele at a separate locus. In many cases the causal gene 
has been shown to be an antigen presenting classical HLA gene.  
 
 
Table III.B.1: HLA associated diseases* 
 
Disease HLA Patients Controls Odds Ratio 
Ankylosing spondylitis     
 B27 90% 9% 81 
Type 1 diabetes     
 DR3 52% 23% 3.6 
 DR4 74% 24% 9 
 DR3 or DR4 93% 43% 17.6 
 DR2 4% 29% 0.1 
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Rheumatoid arthritis     
 DR4 81% 33% 8.7 
Narcolepsy     
 DR2 95% 33% 38.6 
* For each disease, the frequency of the presence of an associated HLA allele in homozygotes or heterozygotes is given in patients 
and controls. The letter designation denotes the HLA gene, while the number is assigned to a specific allele at the gene. For ease of 
reading, the data shown are older serological level HLA typing, rather than more recent molecular typing. 
 
 The difficulty in disease studies lies in identifying the actual predisposing loci and alleles in 
the context of this strong LD, and the fact that relatively common alleles in the population are 
involved. Historically, for HLA associated diseases, the detection of primary disease genes has 
taken a combination of typing both class I and II loci, study of their LD patterns within and 
between the two regions, comparisons of association strength among loci, stratification analyses, 
inter-population comparisons and inter-ethnic group comparisons (reviewed in Thomson et al. 
2008, also see Thomson et al. 2007b). A breakdown in LD may be seen in some ethnic groups, 
particularly African and African American populations which show greater haplotype diversity 
than other populations. For example, in a study of African Americans (Just et al. 1997) over twice 
as many distinct DRB1-DQB1 haplotypes were present as found in a sample of Northern 
Europeans and consequently lower LD in African Americans than in African (McElroy et al. 
2010). 
 A breakdown in the strength of LD may allow stratification analyses within the DR-DQ 
genes to identify the primary disease gene (e.g., see Mignot et al. 2001, 2007 for application to 
narcolepsy and Oksenberg et al. 2004 for application to multiple sclerosis). The direct involvement 
of HLA class II, and in some cases class I, genes in the disease process has been well documented 
for a number of diseases, for example, class II associations: HLA DR-DQ for type 1 diabetes 
(T1D) (reviewed in Thomson et al. 2007b), HLA-DR for rheumatoid arthritis (RA) and multiple 
sclerosis (MS), and HLA-DQ for narcolepsy, and class I associations: HLA-B for ankylosing 
spondilitis. 
 

C. Rare Alleles and Haplotypes 
Rare and low-frequency alleles contribute to single-copy haplotypes (“singletons”). The number 
and total frequency of singletons is a function of the polymorphism at the constituent loci, but 
haplotype frequency estimation accentuates the observed effect of polymorphism on singleton 
frequency as numerous haplotypes with estimated frequencies below one copy may occur.  
Estimated frequencies for rare haplotypes, which incorporate low-frequency alleles, are often 
incorrect, even when the EM algorithm finds the global maximum likelihood (Slatkin and 
Excoffier 1996, Fallin and Schork 2000, Tishkoff and Kidd 2004). In our analyses of the 13th and 
14th IHWS Anthropology and Human Diversity (AHGD) data we evaluated several measures of 
overall LD in the context of the highly polymorphic HLA data (Single et al. 2007a, b, d ). The 
overall D' and Wn statistics responded differently to the number and total frequency of “singleton” 
haplotypes, with D' more sensitive than Wn. The degree of this sensitivity is greater for more 
distant locus pairs, which usually have less overall LD. These relationships should be considered 
in HLA and KIR haplotype studies, where large numbers of low frequency estimates are common.  
Correction of HFs for estimates below a threshold of 1/2N, as initially implemented in Arelquin 
(Excoffier and Slatkin 1995), is not recommended since the frequencies will no longer be 
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maximum likelihood estimates. Nevertheless, for small sample sizes in highly diverse datasets, 
such a correction can temporarily improve the convergence of EM iterations.  
 Low frequency or unique haplotypes can be of specific interest. For example, BMDRs need 
to characterize the degree of haplotype sharing among self identified race/ethnicity (SIRE) groups 
associated with each donor. Information about haplotypes that are rare or unique to certain SIRE 
groups is needed to make realistic registry size and donor recruitment predictions.  
 As mentioned in Section I.C, the haplotype frequency and LD estimates of BMDRs include 
genotype data for millions of individuals, with varying numbers of loci typed and levels of typing 
resolution. Registries have customized various software algorithms to run haplotype estimation 
algorithms on these large datasets. These also require high memory servers. It is remarkable that 
new bone marrow donors not only bring new phenotypes to the registry but also new haplotypes, 
suggesting that haplotype diversity is still underestimated with samples sizes in the millions 
Algorithms have been developed to deal specifically with HLA and KIR data and registry size 
samples  
 

D. Amino acid level analyses 
When a classical HLA gene (or genes) is identified as a primary disease risk factor, it is of interest 
to see if one can identify the combinations of biologically relevant amino acid residues directly 
involved in disease. This is difficult due to the pattern of amino acid variability, including the 
varying degrees of LD between amino acids both within, and between, the classical genes. 
Nonetheless, specific amino acid residues, as well as combinations of amino acids, have been 
implicated as potentially causal in a number of HLA associated diseases, e.g., HLA DRB1-DQB1 
and type 1 diabetes risk (see Valdes and Thomson 1997, Valdes et al. 1997, Thomson et al. 2007b, 
including reviews of the literature), DRB1 and the “shared epitope” set of amino acids 70-74 and 
rheumatoid arthritis (reviewed in Imboden 2009). The recent development of a novel approach to 
genetic association analyses with genes/proteins sub-divided into biologically relevant smaller 
sequence features (SFs), and their variant types (VTs) (Karp et al. 2010), allows a systematic 
search focusing on the most likely actual causative genetic variants in HLA associated diseases. 
We have extended these analyses to include additional complementary methods of analysis, 
including the calculation of LD patterns of single amino acid and other SF variation, to guide our 
understanding of effects that may be due to high correlation of amino acid variation (Thomson et 
al. 2010). 
 Given the varying numbers of residues at polymorphic amino acid sites, e.g., in some cases 
up to 6, our new asymmetric CLD measures (see Section II.B above) are useful in identifying 
cases where stratification analyses can be carried out to aid identification of causal amino acids. 
The extent of LD seen within the classical HLA genes at the amino acid level varies considerably 
between genes. Data for the class II DRB1 and DQB1 loci are shown below (from Lancaster 
2006). 
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Figure III.D.1:Linkage Disequilibrium plots for HLA-DRB1 and HLA-DQB1.  

 
E. Accuracy of HLA haplotype frequency estimates 

We must keep in mind a number of limiting factors regarding haplotype estimation. First, as 
mentioned in the Introduction (Section I.A), haplotype estimation with case/control data may be 
problematic for diseases that do not show a mode of inheritance close to recessive (allowing for 
incomplete penetrance) for the disease gene(s) in the genetic region under consideration. In this 
case, genotype frequencies at markers in high LD with the primary disease gene, or the primary 
disease gene itself, with an additive, dominant, or intermediate mode of inheritance (or other 
modes of inheritance that are not strictly recessive), are not expected to be in HWP (Thomson 
1993, 1995a, b) which is a base assumption used in the EM algorithm to estimate HFs. This will 
lead to inaccuracies (the full extent of which is unknown at this time) in haplotype estimation and 
hence errors in association testing. Single et al. (2002) found (the study is described below) that 
the error in HLA haplotype estimation was more pronounced when the loci involved deviated from 
HWP, especially if there was excess heterozygosity. A similar result was found for bi-allelic 
markers by Fallin and Schork (2000); they also highlighted the fact that the EM algorithm is 
sensitive to sampling fluctuations. An algorithm to deal minimally with haplotype estimation for 
an additive disease model (the easiest algebraically and with expectations close to the dominant 
model) with case/control data is needed. Of course the mode of inheritance is usually unknown, 
but possibly with haplotype estimates from a recessive and an additive model, one could at least 
get a feel for the range of haplotype associations with disease.  
 Single et al. (2002) studied the accuracy of haplotype estimates with known HLA HFs for 
six HLA loci (A, B, DRB1, DQA1, DQB1, and DPB1) from family based data that were analyzed 
as if unknown using the expectation-maximization (EM) algorithm in ARLEQUIN. In general, the 
overall accuracy of the EM algorithm was shown to be very good. However, there were examples 
with large over- and underestimates of particular HFs, even for common haplotypes, especially, as 
mentioned above, when the loci involved deviated significantly from HWP. Estimating HFs for 
three or more loci and then collapsing over loci to generate two locus haplotypes was shown to 
often improve accuracy. This collapsing procedure was most beneficial when one of the loci in the 
two locus haplotype of interest deviated significantly from HWP and the locus collapsed over was 
in LD with the other loci. 
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 The limit of accuracy of haplotype estimation for a large number of loci is of interest. It is 
likely that estimation accuracy will decline as the number of loci is greatly increased and many 
haplotypes then have very low estimated frequencies. We have investigated this issue using data 
from the type 1 diabetes genetic consortium (T1DGC), with dense SNP typing spanning 4.5Mb of 
the HLA region, including HLA class I, II and III regions in a total of 7,523 individuals in 1,640 
pedigrees classified as of Caucasian ancestry (unpublished results of oral presentation of Briggs et 
al. 2007). A total of 2,050 SNPs with an average missing data of 1.2%, minor allele frequencies 
greater than 5%, and Hardy Weinberg Equilibrium p>0.001, were included. Pedigrees were 
excluded if there was missing genotype information for a founder; all remaining individuals within 
the nuclear family with genetic information were phased. We explored haplotype reconstruction 
with fastPHASE despite the assumptions of unrelatedness, due to its ability to phase large data sets 
fairly efficiently, and the comparable results obtained from other phasing algorithms (see 
Appendix A). 
 Haplotype blocks were assigned using Gabriel et al (2002). Haplotype estimation was then 
carried out using fastPHASE v1.2 (Scheet and Stephens 2006), with three levels of the number of 
SNPs considered at a time (Figure III.C.1): (i) 20 SNPs in one haplotype block (block 4), (ii) 159 
SNPs spanning 5 blocks (including block 4), and (iii) all 2,050 SNPs. The same 20 SNPs of block 
4 were extracted from each analysis for comparison, i.e., the data for the 5 blocks and all 2,050 
SNPs at a time were collapsed to the 20 SNPs in Block 4 (Figure III.C.2). There was consistency 
(97% concordance), with and without collapsing, in estimation of the most common haplotypes of 
the 20 SNPs in Block 4 (note that we cannot assign accuracy in these analyses only concordance of 
results). These common 20 SNP haplotypes account for >95% of all haplotypes estimated in all 
three cases. Of interest, the total number of estimated haplotypes at the 20 SNPs in Block 4 
decreased with increasing number of SNPs phased at a time (81, 60, and 56 for 20, 159, and 2,050 
SNPs respectively), however, these all involve very rare haplotypes. Thus, although further study 
of this phenomenon is required, including the accuracy of the haplotype estimates (for which one 
would need to use simulated or other known phase data), collapsing or not over large numbers of 
SNPs does not appear to have major effects that would drastically alter the analyses of common 
haplotypes. These specific results also apply when haplotypes were assigned using MERLIN 
v1.0.1 (Abecasis et al. 2002, 2005).  
 
Figure III.E.1: T1DGC HLA region SNP data 
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Figure III.E.2: Comparison of  haplotype estimates from fastPHASE for block 4 with 
increasing amounts of SNP data  

 
Note: "1 block" refers to the 20 SNPs in the left column. "5 Blocks" refers to results for the same 20 SNPs after collapsing over results for 159 SNPs 
in 5 blocks. "2050 SNPs" refers to results for the 20 SNPs after collapsing over results for all 2050 SNPs. 

 Note that even with family based data, haplotype assignment is subject to error. With 
family based data haplotype assignment is quite accurate for the highly polymorphic classical 
HLA loci. However, with SNP data there is always inherent ambiguity in haplotype assignment 
except for loci homozygous within each family. A number of haplotype phasing algorithms are 
available for SNP data, both for unrelated individuals and for pedigree data, with differences in 
terms of how ambiguous genotypes, missing data, and LD are taken into account (see Nui 2004, 
Salem et al. 2005). A brief overview of the details of the results from fastPHASE versus MERLIN 
is given in Appendix A.  
   

IV. Estimating KIR haplotype frequencies 
 

A. Background to the KIR gene complex 
HLA class I proteins also serve as ligands for killer cell immunoglobulin-like receptors 
(KIR)(Vales-Gomez 1998), a family of inhibitory and activating receptors expressed on natural 
killer (NK) cells and a small percentage of cytotoxic T-cells to regulate cell killing and cytokine 
response (Biron 1997, Bashirova et al. 2006). The KIR gene complex is located on human 
chromosome 19q13.4 and includes 7-12 polymorphic genes per chromosome (a KIR haplotype). 
KIR haplotypes can be divided into two types, called A and B, depending on the activating genes 
present. KIR A haplotypes include only one activating gene (KIR2DS4), while KIR B haplotypes 
generally include more than one activating gene. Figure IV.A.1 illustrates the minimal KIR A 
haplotype, containing 7 expressed KIR genes and two pseudogenes.  
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Figure IV.A.1: KIR Gene Complex on Chromosome 19q13.4 and the minimal A haplotype 

 
 The extensive sequence homology among the KIR loci has resulted in a variety of KIR 
typing methods that generate KIR data with a wide range of resolutions. The level of resolution 
currently reported and analyzed in the literature is predominantly gene content variation (i.e., 
presence or absence of KIR loci). The extensive KIR locus- and haplotype-level polymorphisms 
include locus-level copy number variants. For example, KIR2DS3, can be found in the centromeric 
or telomeric regions of KIR haplotypes or in both portions. In addition to gene content variation, 
KIR genes are individually highly polymorphic (Table IV.A.1). Compounding these issues, 
nomenclature inconsistencies (e.g., distinct ‘loci’ that segregate as alleles, or duplicate loci on the 
centromeric and telomeric ends of the cluster) confound consistent interpretation of results by the 
KIR community, and can introduce analytical biases if not appropriately addressed. 
 
Table IV.A.1: KIR Polymorphism (2010, http://www.ebi.ac.uk/ipd/kir/stats.html) 

Gene 2DL1 2DL2 2DL3 2DL4 2DL5 2DS1 2DS2 2DS3 2DS4 2DS5 
Alleles 43 29 33 47 41 15 22 14 30 15 
Proteins 24 12 17 22 18 7 8 5 13 10 

Nulls 1 0 1 0 0 0 0 1 0 0 
Gene 3DL1 3DS1 3DL2 3DL3 2DP1 3DP1     

Alleles 74 16 84 107 22 23     
Proteins 58 12 62 56 0 0     

Nulls 1 1 1 0 0 0     
 
 

B. Haplotype frequency estimation for KIR 
Because some KIR genes are present only on certain haplotypes, the space of possible KIR 
haplotypes excludes some locus combinations that could be generated from the observed genotypic 
data. The EM algorithm for estimating KIR HFs can be modified to account for this reduced 
combinatorial space (Figure IV.B.1) using a set of reference haplotypes using an a priori list of 
known/possible haplotypes (reference haplotypes) to constrain the EM algorithm (Gourraud et al 
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2007, Yoo et al 2007). The user-designated a priori haplotype list is said to “span” a set of 
observed genotypes if each observed genotype can be generated from at least one pair of 
haplotypes in the list. If the list does not span the observed genotypes the resulting estimates must 
be carefully interpreted. 
 

Figure IV.B.1: Comparison of HLA Haplotype Estimation and KIR Haplotype Estimation  
HLA

KIR

*
HLA

KIR

*

 
 
 Several KIR haplotype frequency estimation studies have noted shortcomings in the use of 
such constraints, imposed by the need to specify predefined haplotype patterns. Gourraud et al 
(2007) found that accuracy measures related to haplotype identification for KIR were particularly 
low for fewer than 200 individuals and suggested that more than 500 individuals would provide an 
acceptable estimation accuracy. Further simulations studies also suggest that the 1/2N correction 
may improve the convergence of the estimations and that estimation works better when achieved 
separately in the centromeric and telomeric region of the KIR gene cluster (delimited by 
KIR2DL4).  
 Yoo et al. (2007) developed an algorithm in the HAPLO-IHP software that incorporates 
information about specific haplotype patterns and an a priori list of haplotypes. In this approach, 
the algorithm first constructs a minimal set of haplotypes to resolve observed genotypes and then 
uses the EM algorithm to estimate HFs. A haplotype pattern file allows the user to require the 
presence of anchor genes, or specify an allelic relationship between specific KIR loci. Yoo et al. 
noted that rare or unusual haplotypes that are incompatible with constraints may be incorrectly 
rejected. When the a priori list of user-defined haplotypes does not span the observed genotypes, 
new haplotypes are “constructed” in an attempt to satisfy any user defined haplotype patterns.  
 Single et al. (2008) assessed the accuracy of KIR HF estimates from the HAPLO-IHP 
program using measures that compare the true HFs with those estimated by the EM algorithm in a 
sample of 90 unrelated individuals from the CEPH families. After adding three new haplotypes 
identified by segregation analysis to the a priori list in order to span the set of observed genotypes, 
no spurious haplotypes were created by the program. While the more common haplotypes were 
estimated relatively well, a large number of low frequency haplotypes were either missed, or were 
estimated but not actually present in the sample.  Application of these methods to 23 global 
populations from Single et al. (2007e) revealed that most populations had individuals with 
presence/absence genotype profiles that could not be constructed using pairs of haplotypes from 
Khakoo and Carrington's (2006) list of well documented KIR haplotypes (i.e., these individuals 
had “new” haplotypes) (Single et al. 2008). The percentage of these individuals was greater than 
five percent in several populations and was more than 10% in four of six African populations. This 
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higher percentage in the African populations is expected as these populations have lower LD, more 
haplotypes, and are less studied than Europeans for KIR. When using a set of a priori haplotypes it 
is important to first check to see if they span the set of observed genotypes and to take these 
findings into account when using estimated HFs in downstream analyses.  
 NullHap (Nowak and Ploski 2008) uses a modified EM algorithm to handle multi-allelic 
loci and loci with null alleles. Loci with a potential null allele are identified prior to estimation. 
The maximization step is then modified to account for the fact that a heterozygote with a null 
allele would have the same observed genotype as a homozygote without a null allele. Comparisons 
to results from Haplo-IHP on bi-allelic presence/absence data gave a difference of roughly 3% in 
estimated frequencies. 
 Haplo-ASP (Erdem et al 2009) uses an answer set programming (ASP) algorithms to 
accommodate restrictions on observable haplotype patterns and can work with multi-allelic data. 
ASP algorithms find a minimal set (answer set) that satisfies a prespecified list of constraints. As 
with Haplo-IHP, multi-locus genotypes that do not conform to pre-specified haplotype patterns can 
be problematic. Haplo-ASP had slightly higher accuracy than Haplo-IHP, based on the data in Yoo 
et al. (2007). 
  
Appendix A: SNP haplotype estimation algorithms 
There are several algorithms currently available for reconstructing extended haplotypes from SNP 
data, including fastPHASE (Scheet and Stephens 2006) and MERLIN (Abecasis et al. 2002, 2005), 
which we discuss in more detail below, and BEAGLE (Browning and Browning 2007), FAMHAP 
(Becker and Knapp 2004), HAPLORE (Zhang et al. 2005), and PHASE (Stephens and Donnelly 
2003). A summary of the main features of MERLIN and fastPHASE are given in Table A.1, and of 
the other algorithms in Table A.2. 
 
Appendix TableA.1: Comparing the main features of MERLIN and fastPHASE 
 MERLIN fastPHASE 
Type of Data Pedigrees Unrelated individuals 

Genetic Data SNPs, multi-allelic SNPs 

Haplotype 
Algorithm 

Sparse binary trees to summarize gene flow 
(Lander-Green algorithm) within a 
PEDIGREE only 

Hidden Markov Model & EM algorithm 
across ALL individuals 

Missing 
genotypes 

Imputes SOME based on gene flow in 
pedigree 

Imputes ALL using EM 

Ambiguous 
Haplotypes 

For heterozygous loci within a family None 

LD Default: no LD; can factor in however results 
in more missing data if recombination is 
suspected 

Factored in to analysis. Flexible: allows 
block-patterns to gradual decline with 
distance 

Limitation Map file: centimorgrams (assumed 1,000,000 
bp =1 cM) 

Assumes loci are equally spaced 
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Appendix TableA.2: Comparison of the main features of PHASE, HAPLORE, BEAGLE, 
and FAMHAP 
PHASE v2.1 (Stephens and Donnelly 2003) 

• Used for HapMap, though not recommended for large sample size and no more than 250 
loci 

HAPLORE (Zhang et al. 2005) 
• Simple pedigrees, no recombination 

BEAGLE (Browning and Browning 2007) 
• Unrelated individuals 

FAMHAP (Becker and Knapp 2004) 
• Case-control data or family data (no recombination) 
• Limited loci  
• only 263 haplotypes are allowed, i.e. 63 SNPs or 21 microsatellite markers with 8 alleles  

______________________________________________________________________________ 
 
 The haplotype estimation of fastPHASE and MERLIN were compared using the T1DGC 
HLA + SNP data described and analyzed in Section III.E above (Briggs et al. 2007). In summary, 
the fastPHASE algorithm assigns haplotypes in unrelated individuals under the assumption that 
similar haplotypes tend to cluster over short regions and cluster membership follows a hidden 
Markov model along the chromosome; while the MERLIN algorithm reconstructs haplotypes 
using sparse binary trees to identify the most likely gene flow within a pedigree. Furthermore, both 
algorithms implement methods for estimating missing genotypes, however not all genotypes were 
readily imputed with MERLIN v1.0.1, and thus affected the evaluation (--infer option) (for more 
details see Table A.1 above).  
 There was high concordance (87.3% overlap) between the algorithms with respect to 
phased chromosomes among the ten most frequent haplotypes based on the 20 SNPs within a 
single block (Block 4). A total of 81 and 235 (35% with at least one missing locus) haplotypes 
were reconstructed using fastPHASE and MERLIN, respectively (see Figure III.E.1 (above in text) 
and Figure A.1 below). The discrepancy in haplotype counts is due to both the persistence of 
missingness and ambiguity in haplotype assignment in MERLIN as inheritance patterns are limited 
to within a pedigree; ambiguity arises when all individuals within a pedigree are heterozygous at a 
locus. This limitation further reduced the phasing concordance with increasing genetic data. For 
example, using 159 SNPs from 5 haplotype blocks, a total of 6,899 (4,878 with an observed count 
of one (N=1)) and 5,702 (2,200 with N=1; 37.2 % with at least one missing locus) haplotypes were 
assigned using fastPHASE and MERLIN, respectively; with 33.5% concordance in chromosome 
reconstruction among the ten most frequent haplotypes (60 and 244 respectively were seen for 
Block 4 from the collapsed data). When using the full data set of 2,050 SNPs, a total of 14,433 
(13,942 with N=1) and 9,071 (5,292 with N=1; 90% with at least one missing locus) haplotypes 
were assigned using fastPHASE and MERLIN, respectively; with less than 1% concordance in 
chromosome reconstruction among the ten most frequent haplotypes (56 and 224 respectively were 
seen for Block 4 from the collapsed data). However, the most frequent haplotypes for Block 4 
derived from both phasing approaches appear similar, when using the original 20 SNPs or the 
collapsed data from 159 SNPs or 2,050 SNPs. A difference between the two approaches is that the 
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most frequent haplotypes explain more chromosomes in fastPHASE than MERLIN (as above we 
cannot assign which is more accurate). The key differences are that with increasing chromosomal 
regions to phase, fastPHASE generated many more unique haplotypes despite imputing all missing 
loci; while MERLIN was limited by missingness, it was still able to construct haplotypes within 
families, marginally reducing the overall haplotype diversity.  
 
Appendix FigureA.1 : Comparing haplotype estimates for block 4 (see Figure III.E.1) using 
increasing genetic data in MERLIN 

 
Note: "1 block" refers to the 20 SNPs in the left column. "5 Blocks" refers to results for the same 20 SNPs after collapsing over results for 159 SNPs 
in 5 blocks. "2050 SNPs" refers to results for the 20 SNPs after collapsing over results for all 2050 SNPs. 
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